2009:Audio Tag Classification Tagatune Results
Contents
Introduction
This task compares various algorithms' abilities to associate tags with 29-second audio clips of songs. The tags used were collected by the Tagatune game and algorithms were evaluated using the previously collected tags (using the same statistical procedures as the the other MIREX 2009 tag classification tasks) and in the Tagatune game itself (the Tagatune metric).
What is Tagatune?
Tagatune is a two-player game designed to extract information about music. In each round of the game, two players are each shown a song, either they are shown the same song or two different songs. Each player describes his given song by typing in any number of tags, which are immediately revealed to the partner. After reviewing each other's tags, the players must each decide whether they have been given the same piece of music as their partner. After both players have voted, the game reveals the true answer (whether the songs given to the pair of players are the same or different) and prepares the next round. Tagatune is live at www.gwap.com
http://www.cs.cmu.edu/~elaw/tagatune.jpg
Since Tagatune is a two-player game, when no partner is available for a player, a bot (a computer program or algorithm) is instituted to play against that player. In each round of the game, the bot generates a set of appropriate tags for a song and reveals these tags to the player. The player then decides his votes for same or different by comparing what he is listening to and the tags revealed by his bot partner. If the songs given to the bot and the player are identical, and the tags generated by the bot are accurate for the song, then the player will have a high probability of guessing correctly that the songs are the same. Otherwise, we would expect the player to make more mistakes in making this judgment. In short, the hypothesis is that better algorithms generate tags that are more fitting descriptions of songs, which in turn, allows players to have a higher chance of guessing correctly.
What is the goal of the MIREX Special Tagatune Evaluation?
The goal of the MIREX Special Tagatune Evaluation competition is to investigate a new method of evaluating music tagging algorithms, by using them as bots in Tagatune, and measuring the number of mistakes players make in guessing whether they are listening to the same or different songs (we will call this the Tagatune metric) when paired against different algorithm bots. We are particularly interested in whether there is a statistical correlation between the ranking of the algorithms induced by the Tagatune metric versus the classical metrics used in MIREX. For the motivation behind this evaluation, see this paper.
There are three main steps to this evaluation.
Step 1: Algorithm to Tags
All submitted algorithms are trained using the Tagatune training set and tested on the Tagatune test set. Artist filtering was used in the production of the test and training split, I.e. the training and test sets contained different artists. The trained algorithm must generate a set of tags for each of the songs in the test set, and rank the tags in a particular order (e.g. by confidence, saliency, relevance etc). This part of the evaluation is very similar, if not identical, to the MIREX 2009 Audio Tag Classification tasks where two outputs are produced by each algorithm:
- a set of binary classifications indicating which tags are relevant to each example,
- a set of 'affinity' scores which indicate the degree to which each tag applies to each track.
These different outputs allow the algorithms to be evaluated both on tag 'classification' and tag 'ranking' (where the tags may be ranked for each track and tracks ranked for each tag).
Step 2: Tagatune Experiments
The tags returned as 'relevant' by each algorithm were subsequently displayed to players of Tagatune in an internet-wide experiment. The number of mistakes players make in guessing whether the songs were the same or different was recorded for each algorithm.
Step 3: Ranking
The submitted algorithm were then evaluated by two methods:
(1) ranking using the MIREX metrics
(2) ranking using the Tagatune metric
The Tagatune Dataset
The Tagatune training and test set consist of music clips that are 29 seconds long, and are associated with 6622 tracks, 517 albums and 270 artists. The genres include classical, new age, electronica, rock, pop, world, jazz, blues, metal, punk etc. The tags used in the experiments are each associated with more than fifty songs, where each song is associated with a tag by more than two players independently. The following table shows the minimum, maximum and average number of songs associated with any tags in the training set, test set and the complete set used in this evaluation.
| Training Set | Test Set | Complete Set | |
| MIN | 18 | 15 | 50 |
| MAX | 2103 | 3767 | 5870 |
| AVG | 212 | 288 | 502 |
Number of samples in training set: 9598
Number of samples in test set: 13194
The following is a list of 160 tags found in the Tagatune dataset.
| no voice | singer | duet | hard rock |
| world | harpsichord | sitar | chorus |
| female opera | male vocal | vocals | clarinet |
| heavy | silence | beats | funky |
| no strings | chimes | foreign | no piano |
| horns | classical | female | spacey |
| jazz | guitar | quiet | no beat |
| banjo | electric | solo | violins |
| folk | female voice | wind | ambient |
| new age | synth | funk | no singing |
| middle eastern | trumpet | percussion | drum |
| airy | voice | repetitive | birds |
| strings | bass | harpsicord | medieval |
| male voice | girl | acoustic | loud |
| classic | string | drums | electronic |
| not classical | chanting | no violin | not rock |
| no guitar | organ | no vocal | talking |
| choral | weird | opera | fast |
| electric guitar | male singer | man singing | classical guitar |
| country | violin | electro | tribal |
| dark | male opera | no vocals | irish |
| electronica | horn | operatic | arabic |
| low | instrumental | trance | chant |
| strange | heavy metal | modern | bells |
| man | deep | fast beat | hard |
| harp | no flute | pop | lute |
| female vocal | oboe | mellow | orchestral |
| light | piano | celtic | male vocals |
| orchestra | eastern | old | flutes |
| punk | spanish | sad | sax |
| slow | male | blues | vocal |
| indian | india | woman | woman singing |
| rock | dance | piano solo | guitars |
| no drums | jazzy | singing | cello |
| calm | female vocals | voices | techno |
| clapping | house | flute | not opera |
| not english | oriental | beat | upbeat |
| soft | noise | choir | female singer |
| rap | metal | hip hop | water |
| baroque | women | fiddle | english |
NOTE: An interesting effect of Tagatune is that we have collected many negative tags, which indicates the absence of an instrument (e.g. no piano, no guitar) or the genre that the song does not belong to (e.g. not classical, not rock). Participants of this evaluation might want to tailor their algorithms to take advantage of these negative tags that are not available on the MIREX 2008/2009 datasets.
MIREX Statistical Evaluation
Participating algorithms were evaluated over a single artist-filtered test/train split using both the full test set and only the 100 query subset used in Tagatune evaluation.
Binary (Classification) Evaluation
Algorithms are evaluated on their performance at tag classification using F-measure. Results are also reported for simple accuracy, however, as this statistic is dominated by the negative example accuracy it is not a reliable indicator of performance (as a system that returns no tags for any example will achieve a high score on this statistic). However, the accuracies are also reported for positive and negative examples separately as these can help elucidate the behaviour of an algorithm (for example demonstrating if the system is under of over predicting).
Affinity (Ranking) Evaluation
Algorithms are evaluated on their performance at tag ranking using the Area Under the Receiver Operating Characteristic Curve (AUC-ROC). The affinity scores for each tag to be applied to a track are sorted prior to the computation of the AUC-ROC statistic, which gives higher scores to ranked tag sets where the correct tags appear towards the top of the set.
General Legend
Team ID
Mandel = Michael Mandel
Manzagol = Pierre-Antoine Manzagol
Marsyas = George Tzanetakis
Zhi = Zhi-Sheng Chen
LabX = Anonymous
Results
The following sections provide detail the evaluation statistics computed. The results of the task are also detailed in the paper Evaluation of Algorithms Using Games: The Case of Music Tagging.
Overall Summary Results (Tagatune)
| Measure | Human | LabX | Mandel | Manzagol | Marsyas | Zhi |
|---|---|---|---|---|---|---|
| Tagatune Metric | 93.00% | 26.80% | 70.10% | 67.50% | 68.60% | 60.90% |
Friedman's Test Results
The following table and plot show the results of Friedman's ANOVA with Tukey-Kramer multiple comparisons computed over the Tagatune metric for each track in the test. The tags generated by the algorithms are pre-processed to remove redundant or contradictory tags, which is important to maintain a minimum quality for the algorithm bots. This pre-processing is not done on the data for which other metrics are computed.
| TeamID | TeamID | Lowerbound | Mean | Upperbound | Significance |
|---|---|---|---|---|---|
| "Human" | "Mandel" | 0.563 | 1.265 | 1.967 | TRUE |
| "Human" | "Manzagol" | 0.513 | 1.215 | 1.917 | TRUE |
| "Human" | "Marsyas" | 0.773 | 1.475 | 2.177 | TRUE |
| "Human" | "Zhi" | 1.258 | 1.960 | 2.662 | TRUE |
| "Human" | "LabX" | 2.233 | 2.935 | 3.637 | TRUE |
| "Mandel" | "Manzagol" | -0.752 | -0.050 | 0.652 | FALSE |
| "Mandel" | "Marsyas" | -0.492 | 0.210 | 0.912 | FALSE |
| "Mandel" | "Zhi" | -0.007 | 0.695 | 1.397 | FALSE |
| "Mandel" | "LabX" | 0.968 | 1.670 | 2.372 | TRUE |
| "Manzagol" | "Marsyas" | -0.442 | 0.260 | 0.962 | FALSE |
| "Manzagol" | "Zhi" | 0.043 | 0.745 | 1.447 | TRUE |
| "Manzagol" | "LabX" | 1.018 | 1.720 | 2.422 | TRUE |
| "Marsyas" | "Zhi" | -0.217 | 0.485 | 1.187 | FALSE |
| "Marsyas" | "LabX" | 0.758 | 1.460 | 2.162 | TRUE |
| "Zhi" | "LabX" | 0.273 | 0.975 | 1.677 | TRUE |
https://music-ir.org/mirex/results/2009/tagatune/tagatune_correctness.friedman.tukeyKramerHSD.png
Tagatune Correctness
| Track | Human | LabX | Mandel | Manzagol | Marsyas | Zhi |
|---|---|---|---|---|---|---|
| 4303 | 1 | 0 | 0.800 | 1 | 1 | 0 |
| 33934 | 1 | 0.200 | 1 | 0.800 | 0.800 | 1 |
| 48608 | 0.800 | 0.400 | 0.800 | 0.800 | 0.800 | 1 |
| 41810 | 1 | 0 | 0.600 | 0.200 | 1 | 1 |
| 42165 | 1 | 0.600 | 0.600 | 1 | 1 | 0.800 |
| 36668 | 0.800 | 0.200 | 0.800 | 0.800 | 0.600 | 0.400 |
| 54698 | 1 | 0.400 | 0.800 | 0.600 | 0.400 | 0.600 |
| 23910 | 1 | 0.600 | 0.400 | 0.600 | 0.600 | 0 |
| 55057 | 1 | 0.200 | 1 | 1 | 1 | 0.400 |
| 10943 | 1 | 0.800 | 1 | 1 | 0 | 0.800 |
| 32635 | 1 | 0.200 | 0.400 | 1 | 0.600 | 0.600 |
| 8802 | 1 | 0 | 0.800 | 1 | 0.600 | 1 |
| 48455 | 0.800 | 0.200 | 1 | 0.600 | 0.600 | 0.600 |
| 31267 | 0.600 | 0.600 | 1 | 0.800 | 0.600 | 0.400 |
| 25699 | 1 | 0.400 | 1 | 1 | 1 | 0 |
| 42361 | 1 | 0 | 1 | 0.800 | 0.400 | 0 |
| 21267 | 1 | 1 | 0.600 | 0 | 0 | 0.400 |
| 9956 | 1 | 0.200 | 0.400 | 0 | 0.400 | 0.400 |
| 44920 | 1 | 0 | 0.600 | 0.800 | 0.800 | 1 |
| 7313 | 1 | 0 | 0.400 | 0.400 | 0.400 | 0.400 |
| 28222 | 0.800 | 0 | 0.600 | 1 | 0.800 | 0.800 |
| 28224 | 1 | 0.200 | 0.600 | 0.800 | 0.600 | 0.800 |
| 19209 | 0.800 | 0.400 | 0.600 | 1 | 1 | 0.400 |
| 23773 | 1 | 0 | 0.600 | 1 | 1 | 1 |
| 43598 | 0.800 | 0 | 0.400 | 0.400 | 0 | 0.800 |
| 88 | 1 | 0 | 1 | 1 | 0.600 | 0.800 |
| 9494 | 1 | 0.200 | 0.200 | 0.400 | 0 | 0.600 |
| 16864 | 0.800 | 0.800 | 0.800 | 0.800 | 1 | 0.600 |
| 31905 | 1 | 0.200 | 0.800 | 1 | 0 | 0.200 |
| 15023 | 1 | 0 | 1 | 1 | 0.800 | 0.600 |
| 27304 | 1 | 0.200 | 0.400 | 0 | 0.800 | 0.600 |
| 16385 | 0.800 | 0.200 | 0.600 | 0.600 | 0.800 | 0.200 |
| 40029 | 0.800 | 1 | 1 | 1 | 0.800 | 0.200 |
| 43295 | 0.800 | 0 | 1 | 0 | 1 | 0.800 |
| 12795 | 0.600 | 1 | 0.200 | 0.200 | 1 | 0 |
| 44560 | 0.800 | 0 | 0.200 | 1 | 0 | 0.400 |
| 15325 | 1 | 0.200 | 1 | 1 | 0.600 | 0.400 |
| 33941 | 1 | 0.200 | 0.600 | 1 | 1 | 0.200 |
| 15134 | 0.800 | 0.400 | 0.600 | 0.600 | 1 | 0.400 |
| 4815 | 0.800 | 0.600 | 0.800 | 0.200 | 0.200 | 0.400 |
| 20022 | 1 | 0.400 | 0.400 | 1 | 1 | 0.600 |
| 26382 | 1 | 0.200 | 0.800 | 0.200 | 0.200 | 0.600 |
| 35687 | 1 | 0.200 | 1 | 0 | 0 | 0.200 |
| 45842 | 1 | 0 | 1 | 0.800 | 1 | 0.600 |
| 2456 | 0.800 | 0.800 | 0.600 | 0 | 0.200 | 0.600 |
| 15128 | 1 | 0 | 0.800 | 0.200 | 1 | 0.400 |
| 25228 | 0.800 | 0 | 0.600 | 0.800 | 0.600 | 0 |
| 46943 | 1 | 0 | 1 | 0.800 | 0 | 0.200 |
| 24215 | 0.800 | 0.400 | 0.400 | 0 | 0.200 | 0 |
| 20132 | 0.600 | 0.600 | 0.400 | 0.400 | 0.800 | 0.200 |
| 19370 | 1 | 0 | 0.800 | 0.800 | 0.800 | 0.200 |
| 2053 | 1 | 1 | 1 | 1 | 1 | 1 |
| 3217 | 1 | 0 | 0.800 | 0.400 | 0.200 | 1 |
| 49877 | 1 | 0 | 0.200 | 0.800 | 0.200 | 1 |
| 20030 | 1 | 0 | 0.600 | 1 | 1 | 0.600 |
| 55361 | 0.800 | 0.600 | 0.600 | 1 | 0.600 | 0.800 |
| 24920 | 1 | 0 | 0.800 | 1 | 0.800 | 0.600 |
| 25635 | 0.600 | 0 | 0.800 | 1 | 1 | 0.800 |
| 43638 | 0.800 | 0.800 | 0.800 | 0.600 | 0 | 0.200 |
| 13047 | 1 | 0.600 | 1 | 0.600 | 1 | 0.600 |
| 46941 | 0.600 | 0 | 0.400 | 0.200 | 0.400 | 0.400 |
| 34281 | 1 | 0 | 1 | 1 | 1 | 0.600 |
| 15093 | 0.600 | 0.400 | 0.800 | 0.400 | 0.200 | 0.400 |
| 36940 | 1 | 0 | 0.800 | 0.400 | 0.200 | 1 |
| 18122 | 0.600 | 0.800 | 0.200 | 0.200 | 0.400 | 0.200 |
| 3074 | 1 | 0 | 0.800 | 1 | 1 | 1 |
| 16429 | 1 | 0 | 0.600 | 0 | 1 | 1 |
| 44091 | 1 | 0.200 | 0.600 | 1 | 1 | 0.200 |
| 23230 | 1 | 0.200 | 0 | 0 | 0.400 | 0 |
| 29086 | 1 | 0.600 | 1 | 1 | 1 | 0.800 |
| 7561 | 1 | 0.800 | 1 | 0 | 0.600 | 1 |
| 42554 | 1 | 0.400 | 0.800 | 0.800 | 1 | 0.200 |
| 40638 | 0.800 | 0 | 0.400 | 1 | 0.600 | 0.200 |
| 19220 | 1 | 0.600 | 0.400 | 1 | 0.800 | 0.800 |
| 3227 | 1 | 0 | 0.800 | 1 | 0.600 | 0.600 |
| 14874 | 1 | 0.200 | 1 | 0.800 | 1 | 1 |
| 31684 | 1 | 0.800 | 1 | 0.400 | 0 | 0.800 |
| 48236 | 1 | 0.600 | 0.200 | 0.600 | 0.800 | 0.200 |
| 14241 | 1 | 0.200 | 0.200 | 1 | 1 | 0.800 |
| 48424 | 0.800 | 0 | 0.400 | 0.800 | 0.800 | 0.200 |
| 37579 | 0.800 | 0.200 | 1 | 1 | 1 | 1 |
| 27476 | 0.800 | 0.200 | 0.400 | 1 | 0.200 | 0.600 |
| 31220 | 1 | 0 | 0.400 | 0.800 | 0 | 0.800 |
| 36649 | 1 | 0.200 | 0.800 | 1 | 0 | 0 |
| 36168 | 1 | 0 | 0.800 | 0.600 | 1 | 1 |
| 36646 | 1 | 0.200 | 0.200 | 0.400 | 0.400 | 0 |
| 21872 | 1 | 0 | 1 | 0 | 0.600 | 0.400 |
| 13232 | 1 | 0.200 | 1 | 1 | 0.800 | 0.800 |
| 30803 | 0.800 | 0 | 1 | 0.400 | 0.600 | 1 |
| 45897 | 1 | 0.200 | 1 | 0.200 | 1 | 1 |
| 18287 | 0.800 | 1 | 0.600 | 0.800 | 0.800 | 0.800 |
| 26461 | 1 | 0.400 | 1 | 1 | 1 | 1 |
| 10949 | 1 | 0 | 0.800 | 1 | 0 | 0.400 |
| 51093 | 1 | 0 | 1 | 1 | 0.800 | 1 |
| 32514 | 1 | 0.200 | 0.800 | 0.600 | 0.800 | 0.600 |
| 53102 | 0.600 | 0.800 | 1 | 1 | 0.800 | 0 |
| 46769 | 1 | 0 | 1 | 1 | 1 | 0.200 |
| 4853 | 1 | 0.800 | 0.200 | 0.600 | 1 | 0.400 |
| 10944 | 1 | 1 | 0.800 | 1 | 0.600 | 0.800 |
| 36811 | 0.800 | 0.200 | 0.600 | 0.200 | 0.200 | 0.200 |
Overall Summary Results (MIREX Statistical evaluation - Binary)
Full dataset
| Measure | LabX | Mandel | Manzagol | Marsyas | Zhi |
|---|---|---|---|---|---|
| Average Tag F-measure | 0.001 | 0.132 | 0.098 | 0.125 | 0.138 |
| Average Tag Accuracy | 0.972 | 0.789 | 0.967 | 0.948 | 0.914 |
| Average Positive Tag Accuracy | 0.004 | 0.698 | 0.120 | 0.223 | 0.413 |
| Average Negative Tag Accuracy | 0.994 | 0.790 | 0.983 | 0.954 | 0.922 |
100 query subset used in Tagatune evaluation
| Measure | LabX | Mandel | Manzagol | Marsyas | Zhi |
|---|---|---|---|---|---|
| Average Tag F-measure | 0.002 | 0.304 | 0.110 | 0.212 | 0.250 |
| Average Tag Accuracy | 0.921 | 0.799 | 0.925 | 0.924 | 0.886 |
| Average Positive Tag Accuracy | 0.005 | 0.688 | 0.095 | 0.224 | 0.361 |
| Average Negative Tag Accuracy | 0.993 | 0.806 | 0.987 | 0.956 | 0.923 |
Binary Relevance F-Measure
Full dataset
| Tag | Positive Examples | Negative Examples | LabX | Mandel | Manzagol | Marsyas | Zhi |
|---|---|---|---|---|---|---|---|
| nostrings | 13.000 | 6486.000 | 0.000 | 0.005 | 0.000 | 0.000 | 0.000 |
| chimes | 22.000 | 6477.000 | 0.022 | 0.016 | 0.000 | 0.035 | 0.046 |
| sad | 18.000 | 6481.000 | 0.006 | 0.014 | 0.062 | 0.000 | 0.026 |
| nodrums | 48.000 | 6451.000 | 0.000 | 0.019 | 0.000 | 0.000 | 0.017 |
| femalevoice | 105.000 | 6394.000 | 0.000 | 0.142 | 0.081 | 0.147 | 0.177 |
| horn | 7 | 6492.000 | 0.000 | 0.003 | 0.000 | 0.000 | 0.014 |
| pop | 196.000 | 6303.000 | 0.000 | 0.166 | 0.184 | 0.254 | 0.158 |
| rock | 601.000 | 5898.000 | 0.000 | 0.562 | 0.502 | 0.551 | 0.523 |
| house | 22.000 | 6477.000 | 0.000 | 0.025 | 0.028 | 0.000 | 0.029 |
| birds | 7 | 6492.000 | 0.000 | 0.012 | 0.000 | 0.034 | 0.020 |
| harpsicord | 59.000 | 6440.000 | 0.000 | 0.165 | 0.127 | 0.209 | 0.094 |
| strange | 22.000 | 6477.000 | 0.000 | 0.015 | 0.000 | 0.043 | 0.022 |
| noflute | 35.000 | 6464.000 | 0.000 | 0.008 | 0.000 | 0.000 | 0.015 |
| novocal | 263.000 | 6236.000 | 0.000 | 0.099 | 0.006 | 0.104 | 0.082 |
| solo | 217.000 | 6282.000 | 0.000 | 0.202 | 0.085 | 0.183 | 0.188 |
| notenglish | 11.000 | 6488.000 | 0.000 | 0.019 | 0.000 | 0.031 | 0.052 |
| novoice | 146.000 | 6353.000 | 0.000 | 0.058 | 0.011 | 0.058 | 0.048 |
| newage | 157.000 | 6342.000 | 0.000 | 0.139 | 0.000 | 0.174 | 0.116 |
| synth | 294.000 | 6205.000 | 0.000 | 0.190 | 0.083 | 0.233 | 0.192 |
| upbeat | 52.000 | 6447.000 | 0.000 | 0.040 | 0.029 | 0.070 | 0.057 |
| slow | 1043.000 | 5456.000 | 0.000 | 0.437 | 0.256 | 0.452 | 0.392 |
| deep | 12.000 | 6487.000 | 0.000 | 0.013 | 0.065 | 0.000 | 0.019 |
| fiddle | 14.000 | 6485.000 | 0.000 | 0.018 | 0.000 | 0.027 | 0.018 |
| orchestral | 12.000 | 6487.000 | 0.000 | 0.008 | 0.000 | 0.000 | 0.029 |
| notclassical | 14.000 | 6485.000 | 0.000 | 0.006 | 0.000 | 0.000 | 0.017 |
| mansinging | 46.000 | 6453.000 | 0.000 | 0.042 | 0.011 | 0.063 | 0.070 |
| wind | 22.000 | 6477.000 | 0.048 | 0.025 | 0.022 | 0.000 | 0.032 |
| piano | 630.000 | 5869.000 | 0.000 | 0.550 | 0.528 | 0.392 | 0.534 |
| spanish | 65.000 | 6434.000 | 0.000 | 0.050 | 0.011 | 0.060 | 0.068 |
| femalesinger | 30.000 | 6469.000 | 0.000 | 0.047 | 0.075 | 0.120 | 0.085 |
| singing | 242.000 | 6257.000 | 0.000 | 0.226 | 0.116 | 0.262 | 0.221 |
| quiet | 263.000 | 6236.000 | 0.000 | 0.219 | 0.054 | 0.342 | 0.212 |
| oboe | 12.000 | 6487.000 | 0.000 | 0.009 | 0.026 | 0.000 | 0.004 |
| tribal | 40.000 | 6459.000 | 0.000 | 0.022 | 0.036 | 0.090 | 0.082 |
| noguitar | 46.000 | 6453.000 | 0.000 | 0.018 | 0.000 | 0.011 | 0.049 |
| femalevocal | 126.000 | 6373.000 | 0.000 | 0.189 | 0.076 | 0.208 | 0.202 |
| fastbeat | 33.000 | 6466.000 | 0.000 | 0.029 | 0.000 | 0.000 | 0.057 |
| hiphop | 32.000 | 6467.000 | 0.000 | 0.058 | 0.222 | 0.000 | 0.121 |
| instrumental | 102.000 | 6397.000 | 0.000 | 0.045 | 0.026 | 0.053 | 0.048 |
| chorus | 50.000 | 6449.000 | 0.000 | 0.161 | 0.255 | 0.000 | 0.234 |
| silence | 12.000 | 6487.000 | 0.000 | 0.030 | 0.075 | 0.000 | 0.029 |
| duet | 18.000 | 6481.000 | 0.000 | 0.014 | 0.000 | 0.000 | 0.015 |
| sax | 20.000 | 6479.000 | 0.000 | 0.012 | 0.000 | 0.026 | 0.000 |
| nobeat | 14.000 | 6485.000 | 0.000 | 0.008 | 0.000 | 0.000 | 0.031 |
| nopiano | 90.000 | 6409.000 | 0.017 | 0.033 | 0.000 | 0.007 | 0.023 |
| novocals | 326.000 | 6173.000 | 0.000 | 0.119 | 0.006 | 0.117 | 0.100 |
| pianosolo | 13.000 | 6486.000 | 0.000 | 0.019 | 0.117 | 0.000 | 0.052 |
| low | 35.000 | 6464.000 | 0.000 | 0.039 | 0.097 | 0.031 | 0.030 |
| weird | 120.000 | 6379.000 | 0.000 | 0.075 | 0.036 | 0.145 | 0.103 |
| dance | 184.000 | 6315.000 | 0.000 | 0.216 | 0.214 | 0.179 | 0.265 |
| harp | 137.000 | 6362.000 | 0.000 | 0.137 | 0.085 | 0.148 | 0.128 |
| horns | 12.000 | 6487.000 | 0.000 | 0.009 | 0.035 | 0.000 | 0.012 |
| funky | 66.000 | 6433.000 | 0.000 | 0.073 | 0.082 | 0.000 | 0.105 |
| hardrock | 80.000 | 6419.000 | 0.000 | 0.182 | 0.115 | 0.000 | 0.171 |
| bells | 36.000 | 6463.000 | 0.000 | 0.021 | 0.028 | 0.046 | 0.042 |
| punk | 42.000 | 6457.000 | 0.000 | 0.122 | 0.159 | 0.000 | 0.120 |
| electricguitar | 51.000 | 6448.000 | 0.000 | 0.049 | 0.071 | 0.113 | 0.065 |
| techno | 827.000 | 5672.000 | 0.000 | 0.584 | 0.441 | 0.609 | 0.621 |
| modern | 73.000 | 6426.000 | 0.000 | 0.037 | 0.046 | 0.051 | 0.053 |
| violins | 258.000 | 6241.000 | 0.000 | 0.269 | 0.155 | 0.220 | 0.251 |
| noviolin | 18.000 | 6481.000 | 0.000 | 0.007 | 0.077 | 0.028 | 0.009 |
| opera | 325.000 | 6174.000 | 0.000 | 0.667 | 0.592 | 0.372 | 0.630 |
| india | 22.000 | 6477.000 | 0.000 | 0.025 | 0.074 | 0.033 | 0.167 |
| cello | 145.000 | 6354.000 | 0.000 | 0.376 | 0.268 | 0.208 | 0.266 |
| sitar | 250.000 | 6249.000 | 0.000 | 0.377 | 0.454 | 0.400 | 0.321 |
| hard | 25.000 | 6474.000 | 0.000 | 0.060 | 0.051 | 0.000 | 0.063 |
| banjo | 15.000 | 6484.000 | 0.000 | 0.015 | 0.051 | 0.013 | 0.026 |
| blues | 42.000 | 6457.000 | 0.000 | 0.095 | 0.103 | 0.121 | 0.053 |
| man | 128.000 | 6371.000 | 0.000 | 0.132 | 0.025 | 0.231 | 0.194 |
| water | 12.000 | 6487.000 | 0.000 | 0.027 | 0.000 | 0.000 | 0.026 |
| femalevocals | 90.000 | 6409.000 | 0.000 | 0.128 | 0.068 | 0.145 | 0.140 |
| beat | 534.000 | 5965.000 | 0.000 | 0.370 | 0.269 | 0.527 | 0.459 |
| vocal | 346.000 | 6153.000 | 0.000 | 0.277 | 0.102 | 0.295 | 0.228 |
| jazz | 88.000 | 6411.000 | 0.000 | 0.099 | 0.076 | 0.153 | 0.118 |
| male | 316.000 | 6183.000 | 0.000 | 0.310 | 0.193 | 0.327 | 0.293 |
| maleopera | 18.000 | 6481.000 | 0.000 | 0.125 | 0.147 | 0.000 | 0.128 |
| drums | 663.000 | 5836.000 | 0.000 | 0.374 | 0.235 | 0.417 | 0.367 |
| electronic | 578.000 | 5921.000 | 0.000 | 0.364 | 0.156 | 0.411 | 0.383 |
| talking | 27.000 | 6472.000 | 0.000 | 0.034 | 0.061 | 0.000 | 0.020 |
| violin | 908.000 | 5591.000 | 0.000 | 0.666 | 0.620 | 0.560 | 0.587 |
| bass | 73.000 | 6426.000 | 0.000 | 0.053 | 0.037 | 0.123 | 0.091 |
| notrock | 19.000 | 6480.000 | 0.000 | 0.004 | 0.000 | 0.034 | 0.035 |
| string | 91.000 | 6408.000 | 0.000 | 0.068 | 0.032 | 0.076 | 0.047 |
| womansinging | 32.000 | 6467.000 | 0.000 | 0.059 | 0.031 | 0.119 | 0.108 |
| guitar | 1166.000 | 5333.000 | 0.000 | 0.584 | 0.464 | 0.507 | 0.544 |
| medieval | 39.000 | 6460.000 | 0.000 | 0.044 | 0.072 | 0.012 | 0.038 |
| clarinet | 16.000 | 6483.000 | 0.000 | 0.028 | 0.000 | 0.000 | 0.036 |
| world | 14.000 | 6485.000 | 0.000 | 0.007 | 0.080 | 0.000 | 0.069 |
| old | 14.000 | 6485.000 | 0.000 | 0.012 | 0.000 | 0.040 | 0.012 |
| middleeastern | 17.000 | 6482.000 | 0.000 | 0.009 | 0.027 | 0.044 | 0.013 |
| baroque | 81.000 | 6418.000 | 0.019 | 0.120 | 0.015 | 0.155 | 0.093 |
| oriental | 50.000 | 6449.000 | 0.000 | 0.038 | 0.055 | 0.072 | 0.072 |
| trumpet | 17.000 | 6482.000 | 0.000 | 0.016 | 0.080 | 0.000 | 0.000 |
| irish | 49.000 | 6450.000 | 0.000 | 0.070 | 0.018 | 0.092 | 0.030 |
| ambient | 419.000 | 6080.000 | 0.000 | 0.432 | 0.028 | 0.397 | 0.308 |
| funk | 32.000 | 6467.000 | 0.000 | 0.062 | 0.086 | 0.000 | 0.057 |
| metal | 159.000 | 6340.000 | 0.006 | 0.333 | 0.187 | 0.000 | 0.295 |
| woman | 186.000 | 6313.000 | 0.000 | 0.292 | 0.106 | 0.274 | 0.335 |
| dark | 36.000 | 6463.000 | 0.000 | 0.045 | 0.035 | 0.000 | 0.027 |
| acoustic | 66.000 | 6433.000 | 0.012 | 0.081 | 0.097 | 0.106 | 0.124 |
| light | 16.000 | 6483.000 | 0.000 | 0.009 | 0.000 | 0.054 | 0.007 |
| repetitive | 24.000 | 6475.000 | 0.000 | 0.012 | 0.000 | 0.000 | 0.000 |
| trance | 51.000 | 6448.000 | 0.000 | 0.049 | 0.021 | 0.057 | 0.063 |
| celtic | 27.000 | 6472.000 | 0.000 | 0.024 | 0.000 | 0.067 | 0.017 |
| electric | 44.000 | 6455.000 | 0.000 | 0.022 | 0.000 | 0.013 | 0.039 |
| malevocals | 123.000 | 6376.000 | 0.066 | 0.122 | 0.122 | 0.178 | 0.101 |
| heavy | 59.000 | 6440.000 | 0.000 | 0.110 | 0.161 | 0.000 | 0.120 |
| jazzy | 68.000 | 6431.000 | 0.000 | 0.081 | 0.099 | 0.112 | 0.112 |
| country | 122.000 | 6377.000 | 0.000 | 0.179 | 0.141 | 0.190 | 0.128 |
| beats | 157.000 | 6342.000 | 0.009 | 0.131 | 0.123 | 0.240 | 0.223 |
| loud | 313.000 | 6186.000 | 0.000 | 0.307 | 0.148 | 0.448 | 0.318 |
| classical | 1544.000 | 4955.000 | 0.000 | 0.727 | 0.244 | 0.523 | 0.618 |
| voices | 39.000 | 6460.000 | 0.000 | 0.045 | 0.000 | 0.038 | 0.103 |
| flutes | 54.000 | 6445.000 | 0.000 | 0.124 | 0.298 | 0.000 | 0.227 |
| choral | 104.000 | 6395.000 | 0.000 | 0.360 | 0.282 | 0.256 | 0.475 |
| harpsichord | 263.000 | 6236.000 | 0.000 | 0.398 | 0.375 | 0.384 | 0.290 |
| eastern | 80.000 | 6419.000 | 0.000 | 0.068 | 0.100 | 0.185 | 0.110 |
| foreign | 51.000 | 6448.000 | 0.000 | 0.061 | 0.023 | 0.124 | 0.142 |
| fast | 616.000 | 5883.000 | 0.000 | 0.324 | 0.154 | 0.384 | 0.291 |
| english | 11.000 | 6488.000 | 0.000 | 0.005 | 0.000 | 0.000 | 0.014 |
| spacey | 27.000 | 6472.000 | 0.000 | 0.047 | 0.000 | 0.052 | 0.033 |
| electro | 87.000 | 6412.000 | 0.000 | 0.064 | 0.015 | 0.079 | 0.091 |
| calm | 33.000 | 6466.000 | 0.000 | 0.016 | 0.000 | 0.038 | 0.023 |
| lute | 15.000 | 6484.000 | 0.000 | 0.049 | 0.088 | 0.000 | 0.051 |
| arabic | 10.000 | 6489.000 | 0.000 | 0.003 | 0.019 | 0.000 | 0.000 |
| voice | 111.000 | 6388.000 | 0.000 | 0.086 | 0.057 | 0.115 | 0.086 |
| vocals | 256.000 | 6243.000 | 0.000 | 0.176 | 0.084 | 0.203 | 0.187 |
| rap | 41.000 | 6458.000 | 0.000 | 0.111 | 0.219 | 0.000 | 0.296 |
| singer | 25.000 | 6474.000 | 0.000 | 0.023 | 0.029 | 0.021 | 0.000 |
| strings | 997.000 | 5502.000 | 0.000 | 0.551 | 0.141 | 0.509 | 0.461 |
| orchestra | 98.000 | 6401.000 | 0.000 | 0.117 | 0.108 | 0.118 | 0.110 |
| guitars | 25.000 | 6474.000 | 0.000 | 0.011 | 0.000 | 0.000 | 0.036 |
| chant | 51.000 | 6448.000 | 0.000 | 0.190 | 0.182 | 0.350 | 0.262 |
| heavymetal | 43.000 | 6456.000 | 0.000 | 0.106 | 0.109 | 0.000 | 0.123 |
| girl | 10.000 | 6489.000 | 0.000 | 0.011 | 0.000 | 0.000 | 0.041 |
| percussion | 26.000 | 6473.000 | 0.004 | 0.020 | 0.000 | 0.032 | 0.059 |
| flute | 455.000 | 6044.000 | 0.000 | 0.609 | 0.589 | 0.479 | 0.475 |
| drum | 89.000 | 6410.000 | 0.000 | 0.066 | 0.060 | 0.110 | 0.101 |
| classic | 235.000 | 6264.000 | 0.000 | 0.210 | 0.106 | 0.180 | 0.185 |
| nosinging | 51.000 | 6448.000 | 0.000 | 0.019 | 0.000 | 0.038 | 0.012 |
| chanting | 32.000 | 6467.000 | 0.000 | 0.068 | 0.053 | 0.086 | 0.122 |
| folk | 48.000 | 6451.000 | 0.000 | 0.036 | 0.018 | 0.044 | 0.063 |
| malesinger | 39.000 | 6460.000 | 0.000 | 0.033 | 0.045 | 0.084 | 0.051 |
| mellow | 29.000 | 6470.000 | 0.000 | 0.012 | 0.000 | 0.000 | 0.015 |
| indian | 313.000 | 6186.000 | 0.000 | 0.284 | 0.185 | 0.319 | 0.269 |
| electronica | 39.000 | 6460.000 | 0.000 | 0.028 | 0.000 | 0.055 | 0.045 |
| women | 22.000 | 6477.000 | 0.000 | 0.047 | 0.057 | 0.111 | 0.129 |
| notopera | 19.000 | 6480.000 | 0.000 | 0.004 | 0.000 | 0.000 | 0.028 |
| noise | 16.000 | 6483.000 | 0.000 | 0.016 | 0.065 | 0.000 | 0.021 |
| soft | 248.000 | 6251.000 | 0.000 | 0.166 | 0.075 | 0.214 | 0.169 |
| femaleopera | 27.000 | 6472.000 | 0.000 | 0.107 | 0.123 | 0.000 | 0.126 |
| malevoice | 155.000 | 6344.000 | 0.000 | 0.141 | 0.062 | 0.192 | 0.153 |
| organ | 17.000 | 6482.000 | 0.000 | 0.007 | 0.006 | 0.011 | 0.009 |
| female | 320.000 | 6179.000 | 0.000 | 0.460 | 0.244 | 0.322 | 0.408 |
| classicalguitar | 38.000 | 6461.000 | 0.000 | 0.180 | 0.104 | 0.000 | 0.129 |
| operatic | 17.000 | 6482.000 | 0.000 | 0.036 | 0.000 | 0.000 | 0.070 |
| airy | 12.000 | 6487.000 | 0.026 | 0.013 | 0.000 | 0.038 | 0.023 |
| malevocal | 271.000 | 6228.000 | 0.000 | 0.273 | 0.200 | 0.304 | 0.218 |
| clapping | 12.000 | 6487.000 | 0.000 | 0.008 | 0.000 | 0.000 | 0.000 |
| choir | 161.000 | 6338.000 | 0.000 | 0.508 | 0.544 | 0.429 | 0.590 |
100 query subset used in Tagatune evaluation
| Tag | Positive Examples | Negative Examples | LabX | Mandel | Manzagol | Marsyas | Zhi |
|---|---|---|---|---|---|---|---|
| sad | 5 | 95.000 | 0.125 | 0.167 | 0.333 | 0.000 | 0.214 |
| nodrums | 4 | 96.000 | 0.000 | 0.102 | 0.000 | 0.000 | 0.148 |
| femalevoice | 6 | 94.000 | 0.000 | 0.385 | 0.000 | 0.308 | 0.154 |
| pop | 10.000 | 90.000 | 0.000 | 0.462 | 0.522 | 0.700 | 0.500 |
| rock | 14.000 | 86.000 | 0.000 | 0.710 | 0.333 | 0.718 | 0.688 |
| birds | 1 | 99.000 | 0.000 | 0.200 | 0.000 | 0.000 | 0.000 |
| harpsicord | 3 | 97.000 | 0.000 | 0.400 | 0.000 | 0.000 | 0.200 |
| strange | 2 | 98.000 | 0.000 | 0.085 | 0.000 | 0.000 | 0.000 |
| novocal | 12.000 | 88.000 | 0.000 | 0.328 | 0.154 | 0.100 | 0.083 |
| solo | 11.000 | 89.000 | 0.000 | 0.276 | 0.154 | 0.235 | 0.211 |
| notenglish | 1 | 99.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| novoice | 4 | 96.000 | 0.000 | 0.143 | 0.000 | 0.000 | 0.000 |
| newage | 12.000 | 88.000 | 0.000 | 0.421 | 0.000 | 0.400 | 0.333 |
| synth | 11.000 | 89.000 | 0.000 | 0.514 | 0.167 | 0.667 | 0.333 |
| upbeat | 4 | 96.000 | 0.000 | 0.214 | 0.000 | 0.000 | 0.308 |
| slow | 44.000 | 56.000 | 0.000 | 0.769 | 0.259 | 0.733 | 0.485 |
| deep | 2 | 98.000 | 0.000 | 0.091 | 0.000 | 0.000 | 0.000 |
| fiddle | 1 | 99.000 | 0.000 | 0.069 | 0.000 | 0.000 | 0.000 |
| orchestral | 2 | 98.000 | 0.000 | 0.062 | 0.000 | 0.000 | 0.121 |
| mansinging | 2 | 98.000 | 0.000 | 0.167 | 0.000 | 0.286 | 0.333 |
| wind | 1 | 99.000 | 0.000 | 0.095 | 0.000 | 0.000 | 0.105 |
| piano | 9 | 91.000 | 0.000 | 0.286 | 0.100 | 0.286 | 0.267 |
| femalesinger | 4 | 96.000 | 0.000 | 0.240 | 0.000 | 0.000 | 0.000 |
| singing | 13.000 | 87.000 | 0.000 | 0.667 | 0.235 | 0.480 | 0.500 |
| quiet | 16.000 | 84.000 | 0.000 | 0.500 | 0.118 | 0.611 | 0.471 |
| tribal | 1 | 99.000 | 0.000 | 0.167 | 0.000 | 0.000 | 1.000 |
| noguitar | 2 | 98.000 | 0.000 | 0.073 | 0.000 | 0.000 | 0.000 |
| femalevocal | 13.000 | 87.000 | 0.000 | 0.545 | 0.190 | 0.609 | 0.421 |
| fastbeat | 1 | 99.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| instrumental | 4 | 96.000 | 0.000 | 0.131 | 0.000 | 0.000 | 0.125 |
| chorus | 3 | 97.000 | 0.000 | 0.444 | 0.000 | 0.000 | 0.500 |
| silence | 1 | 99.000 | 0.000 | 0.200 | 0.000 | 0.000 | 0.333 |
| sax | 2 | 98.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| nobeat | 1 | 99.000 | 0.000 | 0.044 | 0.000 | 0.000 | 0.000 |
| nopiano | 3 | 97.000 | 0.000 | 0.095 | 0.000 | 0.333 | 0.000 |
| novocals | 15.000 | 85.000 | 0.000 | 0.353 | 0.000 | 0.222 | 0.087 |
| low | 5 | 95.000 | 0.000 | 0.207 | 0.000 | 0.000 | 0.000 |
| weird | 3 | 97.000 | 0.000 | 0.121 | 0.000 | 0.000 | 0.000 |
| dance | 4 | 96.000 | 0.000 | 0.615 | 0.250 | 0.444 | 0.500 |
| harp | 3 | 97.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.286 |
| horns | 3 | 97.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| funky | 1 | 99.000 | 0.000 | 0.118 | 0.000 | 0.000 | 0.000 |
| hardrock | 4 | 96.000 | 0.000 | 0.533 | 0.000 | 0.000 | 0.421 |
| bells | 2 | 98.000 | 0.000 | 0.080 | 0.667 | 0.000 | 0.000 |
| punk | 4 | 96.000 | 0.000 | 0.615 | 0.857 | 0.000 | 0.500 |
| techno | 12.000 | 88.000 | 0.000 | 0.621 | 0.500 | 0.571 | 0.480 |
| modern | 5 | 95.000 | 0.000 | 0.158 | 0.333 | 0.250 | 0.364 |
| violins | 25.000 | 75.000 | 0.000 | 0.656 | 0.258 | 0.353 | 0.538 |
| opera | 6 | 94.000 | 0.000 | 0.571 | 0.182 | 0.462 | 0.571 |
| cello | 21.000 | 79.000 | 0.000 | 0.723 | 0.345 | 0.378 | 0.467 |
| sitar | 1 | 99.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.500 |
| man | 4 | 96.000 | 0.000 | 0.167 | 0.400 | 0.400 | 0.000 |
| femalevocals | 9 | 91.000 | 0.000 | 0.462 | 0.000 | 0.353 | 0.286 |
| beat | 13.000 | 87.000 | 0.000 | 0.457 | 0.000 | 0.545 | 0.500 |
| vocal | 22.000 | 78.000 | 0.000 | 0.708 | 0.000 | 0.718 | 0.345 |
| jazz | 3 | 97.000 | 0.000 | 0.333 | 0.000 | 0.000 | 0.333 |
| male | 10.000 | 90.000 | 0.000 | 0.438 | 0.133 | 0.545 | 0.000 |
| drums | 14.000 | 86.000 | 0.000 | 0.564 | 0.222 | 0.533 | 0.480 |
| electronic | 16.000 | 84.000 | 0.000 | 0.571 | 0.316 | 0.690 | 0.533 |
| violin | 44.000 | 56.000 | 0.000 | 0.886 | 0.800 | 0.835 | 0.685 |
| bass | 5 | 95.000 | 0.000 | 0.171 | 0.000 | 0.250 | 0.000 |
| string | 12.000 | 88.000 | 0.000 | 0.333 | 0.000 | 0.000 | 0.160 |
| womansinging | 3 | 97.000 | 0.000 | 0.240 | 0.000 | 0.000 | 0.000 |
| guitar | 15.000 | 85.000 | 0.000 | 0.500 | 0.500 | 0.393 | 0.381 |
| medieval | 5 | 95.000 | 0.000 | 0.267 | 0.000 | 0.000 | 0.000 |
| old | 1 | 99.000 | 0.000 | 0.050 | 0.000 | 0.000 | 0.061 |
| middleeastern | 1 | 99.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| baroque | 7 | 93.000 | 0.000 | 0.276 | 0.000 | 0.000 | 0.238 |
| oriental | 1 | 99.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| trumpet | 2 | 98.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| irish | 1 | 99.000 | 0.000 | 0.091 | 0.000 | 0.000 | 0.222 |
| ambient | 14.000 | 86.000 | 0.000 | 0.625 | 0.000 | 0.667 | 0.333 |
| funk | 2 | 98.000 | 0.000 | 0.444 | 0.000 | 0.000 | 0.500 |
| metal | 5 | 95.000 | 0.160 | 0.714 | 0.333 | 0.000 | 0.500 |
| woman | 14.000 | 86.000 | 0.000 | 0.710 | 0.000 | 0.583 | 0.381 |
| dark | 1 | 99.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| acoustic | 3 | 97.000 | 0.000 | 0.375 | 0.000 | 0.500 | 0.500 |
| light | 1 | 99.000 | 0.000 | 0.040 | 0.000 | 0.000 | 0.500 |
| trance | 4 | 96.000 | 0.000 | 0.316 | 0.000 | 0.000 | 0.462 |
| celtic | 1 | 99.000 | 0.000 | 0.057 | 0.000 | 0.000 | 0.000 |
| electric | 1 | 99.000 | 0.000 | 0.074 | 0.000 | 0.000 | 0.000 |
| malevocals | 6 | 94.000 | 0.000 | 0.154 | 0.250 | 0.267 | 0.300 |
| heavy | 4 | 96.000 | 0.000 | 0.250 | 0.400 | 0.000 | 0.353 |
| jazzy | 3 | 97.000 | 0.000 | 0.267 | 0.750 | 0.000 | 0.462 |
| country | 2 | 98.000 | 0.000 | 0.250 | 0.000 | 0.222 | 0.000 |
| beats | 4 | 96.000 | 0.000 | 0.087 | 0.000 | 0.000 | 0.000 |
| loud | 11.000 | 89.000 | 0.000 | 0.545 | 0.154 | 0.588 | 0.571 |
| classical | 48.000 | 52.000 | 0.000 | 0.839 | 0.038 | 0.821 | 0.771 |
| voices | 2 | 98.000 | 0.000 | 0.250 | 0.000 | 0.000 | 0.400 |
| choral | 7 | 93.000 | 0.000 | 0.500 | 0.000 | 0.000 | 0.333 |
| harpsichord | 12.000 | 88.000 | 0.000 | 0.621 | 0.435 | 0.741 | 0.458 |
| eastern | 1 | 99.000 | 0.000 | 0.091 | 0.000 | 0.000 | 0.667 |
| foreign | 2 | 98.000 | 0.000 | 0.111 | 0.000 | 0.000 | 0.000 |
| fast | 17.000 | 83.000 | 0.000 | 0.389 | 0.000 | 0.545 | 0.357 |
| english | 1 | 99.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| spacey | 2 | 98.000 | 0.000 | 0.211 | 0.000 | 0.667 | 0.095 |
| electro | 4 | 96.000 | 0.000 | 0.231 | 0.000 | 0.000 | 0.308 |
| calm | 6 | 94.000 | 0.000 | 0.087 | 0.000 | 0.000 | 0.000 |
| voice | 10.000 | 90.000 | 0.000 | 0.545 | 0.000 | 0.333 | 0.143 |
| vocals | 16.000 | 84.000 | 0.000 | 0.512 | 0.273 | 0.387 | 0.200 |
| singer | 1 | 99.000 | 0.000 | 0.069 | 0.500 | 0.000 | 0.000 |
| strings | 47.000 | 53.000 | 0.000 | 0.905 | 0.151 | 0.872 | 0.780 |
| orchestra | 5 | 95.000 | 0.000 | 0.138 | 0.000 | 0.000 | 0.000 |
| chant | 4 | 96.000 | 0.000 | 0.444 | 0.000 | 0.400 | 0.667 |
| heavymetal | 2 | 98.000 | 0.000 | 0.364 | 0.000 | 0.000 | 0.308 |
| girl | 2 | 98.000 | 0.000 | 0.083 | 0.000 | 0.000 | 0.333 |
| flute | 8 | 92.000 | 0.000 | 0.444 | 0.500 | 0.316 | 0.143 |
| drum | 3 | 97.000 | 0.000 | 0.160 | 0.000 | 0.500 | 0.000 |
| classic | 24.000 | 76.000 | 0.000 | 0.687 | 0.148 | 0.368 | 0.462 |
| nosinging | 3 | 97.000 | 0.000 | 0.094 | 0.000 | 0.000 | 0.000 |
| chanting | 2 | 98.000 | 0.000 | 0.222 | 0.000 | 0.000 | 0.000 |
| folk | 2 | 98.000 | 0.000 | 0.105 | 0.000 | 0.000 | 0.000 |
| malesinger | 1 | 99.000 | 0.000 | 0.077 | 0.500 | 0.286 | 0.000 |
| mellow | 5 | 95.000 | 0.000 | 0.176 | 0.000 | 0.000 | 0.000 |
| indian | 3 | 97.000 | 0.000 | 0.154 | 0.000 | 0.000 | 0.400 |
| electronica | 2 | 98.000 | 0.000 | 0.125 | 0.000 | 0.000 | 0.200 |
| women | 3 | 97.000 | 0.000 | 0.235 | 0.000 | 0.500 | 0.333 |
| soft | 21.000 | 79.000 | 0.000 | 0.353 | 0.000 | 0.308 | 0.242 |
| malevoice | 9 | 91.000 | 0.000 | 0.452 | 0.000 | 0.471 | 0.143 |
| organ | 1 | 99.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| female | 19.000 | 81.000 | 0.000 | 0.842 | 0.516 | 0.688 | 0.444 |
| classicalguitar | 1 | 99.000 | 0.000 | 0.500 | 0.000 | 0.000 | 0.500 |
| airy | 4 | 96.000 | 0.000 | 0.258 | 0.000 | 0.400 | 0.381 |
| malevocal | 11.000 | 89.000 | 0.000 | 0.545 | 0.333 | 0.571 | 0.286 |
| clapping | 2 | 98.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| choir | 7 | 93.000 | 0.000 | 0.615 | 0.250 | 0.308 | 0.500 |
Binary Accuracy
Full dataset
| Tag | Positive Examples | Negative Examples | LabX | Mandel | Manzagol | Marsyas | Zhi |
|---|---|---|---|---|---|---|---|
| nostrings | 13.000 | 6486.000 | 0.998 | 0.496 | 0.998 | 0.992 | 0.986 |
| chimes | 22.000 | 6477.000 | 0.986 | 0.778 | 0.994 | 0.992 | 0.981 |
| sad | 18.000 | 6481.000 | 0.894 | 0.705 | 0.995 | 0.989 | 0.862 |
| nodrums | 48.000 | 6451.000 | 0.993 | 0.569 | 0.991 | 0.977 | 0.824 |
| femalevoice | 105.000 | 6394.000 | 0.984 | 0.851 | 0.962 | 0.945 | 0.950 |
| horn | 7 | 6492.000 | 0.996 | 0.801 | 0.997 | 0.991 | 0.978 |
| pop | 196.000 | 6303.000 | 0.970 | 0.749 | 0.877 | 0.921 | 0.838 |
| rock | 601.000 | 5898.000 | 0.908 | 0.878 | 0.922 | 0.863 | 0.859 |
| house | 22.000 | 6477.000 | 0.997 | 0.793 | 0.989 | 0.991 | 0.939 |
| birds | 7 | 6492.000 | 0.998 | 0.922 | 0.997 | 0.991 | 0.923 |
| harpsicord | 59.000 | 6440.000 | 0.991 | 0.929 | 0.979 | 0.964 | 0.864 |
| strange | 22.000 | 6477.000 | 0.997 | 0.588 | 0.996 | 0.986 | 0.960 |
| noflute | 35.000 | 6464.000 | 0.987 | 0.559 | 0.994 | 0.982 | 0.939 |
| novocal | 263.000 | 6236.000 | 0.960 | 0.548 | 0.952 | 0.870 | 0.816 |
| solo | 217.000 | 6282.000 | 0.966 | 0.831 | 0.960 | 0.890 | 0.861 |
| notenglish | 11.000 | 6488.000 | 0.998 | 0.839 | 0.998 | 0.990 | 0.972 |
| novoice | 146.000 | 6353.000 | 0.978 | 0.569 | 0.972 | 0.935 | 0.865 |
| newage | 157.000 | 6342.000 | 0.976 | 0.759 | 0.974 | 0.936 | 0.783 |
| synth | 294.000 | 6205.000 | 0.955 | 0.696 | 0.949 | 0.874 | 0.789 |
| upbeat | 52.000 | 6447.000 | 0.992 | 0.693 | 0.979 | 0.980 | 0.883 |
| slow | 1043.000 | 5456.000 | 0.840 | 0.708 | 0.814 | 0.716 | 0.743 |
| deep | 12.000 | 6487.000 | 0.998 | 0.830 | 0.996 | 0.991 | 0.953 |
| fiddle | 14.000 | 6485.000 | 0.998 | 0.817 | 0.991 | 0.989 | 0.950 |
| orchestral | 12.000 | 6487.000 | 0.998 | 0.779 | 0.995 | 0.989 | 0.908 |
| notclassical | 14.000 | 6485.000 | 0.998 | 0.660 | 0.996 | 0.992 | 0.945 |
| mansinging | 46.000 | 6453.000 | 0.993 | 0.748 | 0.972 | 0.982 | 0.955 |
| wind | 22.000 | 6477.000 | 0.994 | 0.834 | 0.987 | 0.984 | 0.878 |
| piano | 630.000 | 5869.000 | 0.903 | 0.879 | 0.891 | 0.758 | 0.889 |
| spanish | 65.000 | 6434.000 | 0.990 | 0.826 | 0.973 | 0.976 | 0.954 |
| femalesinger | 30.000 | 6469.000 | 0.995 | 0.870 | 0.992 | 0.984 | 0.974 |
| singing | 242.000 | 6257.000 | 0.963 | 0.802 | 0.942 | 0.889 | 0.931 |
| quiet | 263.000 | 6236.000 | 0.960 | 0.792 | 0.957 | 0.890 | 0.813 |
| oboe | 12.000 | 6487.000 | 0.998 | 0.935 | 0.977 | 0.977 | 0.917 |
| tribal | 40.000 | 6459.000 | 0.994 | 0.770 | 0.992 | 0.975 | 0.973 |
| noguitar | 46.000 | 6453.000 | 0.993 | 0.560 | 0.992 | 0.972 | 0.916 |
| femalevocal | 126.000 | 6373.000 | 0.981 | 0.870 | 0.936 | 0.933 | 0.949 |
| fastbeat | 33.000 | 6466.000 | 0.995 | 0.784 | 0.991 | 0.989 | 0.914 |
| hiphop | 32.000 | 6467.000 | 0.995 | 0.906 | 0.992 | 0.991 | 0.978 |
| instrumental | 102.000 | 6397.000 | 0.976 | 0.598 | 0.965 | 0.950 | 0.819 |
| chorus | 50.000 | 6449.000 | 0.992 | 0.939 | 0.982 | 0.970 | 0.965 |
| silence | 12.000 | 6487.000 | 0.983 | 0.901 | 0.992 | 0.991 | 0.959 |
| duet | 18.000 | 6481.000 | 0.997 | 0.890 | 0.986 | 0.988 | 0.938 |
| sax | 20.000 | 6479.000 | 0.974 | 0.896 | 0.986 | 0.988 | 0.960 |
| nobeat | 14.000 | 6485.000 | 0.994 | 0.677 | 0.997 | 0.990 | 0.943 |
| nopiano | 90.000 | 6409.000 | 0.948 | 0.571 | 0.983 | 0.956 | 0.894 |
| novocals | 326.000 | 6173.000 | 0.950 | 0.546 | 0.948 | 0.856 | 0.814 |
| pianosolo | 13.000 | 6486.000 | 0.998 | 0.854 | 0.986 | 0.991 | 0.932 |
| low | 35.000 | 6464.000 | 0.995 | 0.816 | 0.986 | 0.981 | 0.872 |
| weird | 120.000 | 6379.000 | 0.982 | 0.641 | 0.975 | 0.946 | 0.914 |
| dance | 184.000 | 6315.000 | 0.972 | 0.823 | 0.941 | 0.939 | 0.888 |
| harp | 137.000 | 6362.000 | 0.979 | 0.885 | 0.974 | 0.932 | 0.882 |
| horns | 12.000 | 6487.000 | 0.989 | 0.935 | 0.992 | 0.988 | 0.975 |
| funky | 66.000 | 6433.000 | 0.990 | 0.774 | 0.972 | 0.979 | 0.916 |
| hardrock | 80.000 | 6419.000 | 0.988 | 0.894 | 0.981 | 0.968 | 0.887 |
| bells | 36.000 | 6463.000 | 0.994 | 0.731 | 0.989 | 0.981 | 0.972 |
| punk | 42.000 | 6457.000 | 0.964 | 0.927 | 0.959 | 0.986 | 0.924 |
| electricguitar | 51.000 | 6448.000 | 0.992 | 0.820 | 0.988 | 0.978 | 0.868 |
| techno | 827.000 | 5672.000 | 0.873 | 0.832 | 0.892 | 0.853 | 0.877 |
| modern | 73.000 | 6426.000 | 0.989 | 0.592 | 0.975 | 0.965 | 0.896 |
| violins | 258.000 | 6241.000 | 0.939 | 0.819 | 0.933 | 0.922 | 0.849 |
| noviolin | 18.000 | 6481.000 | 0.997 | 0.519 | 0.996 | 0.989 | 0.965 |
| opera | 325.000 | 6174.000 | 0.950 | 0.954 | 0.955 | 0.847 | 0.955 |
| india | 22.000 | 6477.000 | 0.996 | 0.770 | 0.996 | 0.991 | 0.989 |
| cello | 145.000 | 6354.000 | 0.978 | 0.947 | 0.950 | 0.913 | 0.955 |
| sitar | 250.000 | 6249.000 | 0.962 | 0.890 | 0.960 | 0.928 | 0.890 |
| hard | 25.000 | 6474.000 | 0.991 | 0.884 | 0.994 | 0.990 | 0.894 |
| banjo | 15.000 | 6484.000 | 0.998 | 0.959 | 0.994 | 0.977 | 0.942 |
| blues | 42.000 | 6457.000 | 0.994 | 0.921 | 0.987 | 0.982 | 0.989 |
| man | 128.000 | 6371.000 | 0.980 | 0.792 | 0.964 | 0.951 | 0.958 |
| water | 12.000 | 6487.000 | 0.998 | 0.911 | 0.994 | 0.991 | 0.896 |
| femalevocals | 90.000 | 6409.000 | 0.986 | 0.867 | 0.962 | 0.957 | 0.964 |
| beat | 534.000 | 5965.000 | 0.918 | 0.755 | 0.910 | 0.893 | 0.865 |
| vocal | 346.000 | 6153.000 | 0.947 | 0.784 | 0.930 | 0.847 | 0.916 |
| jazz | 88.000 | 6411.000 | 0.986 | 0.812 | 0.940 | 0.957 | 0.905 |
| male | 316.000 | 6183.000 | 0.951 | 0.822 | 0.934 | 0.895 | 0.922 |
| maleopera | 18.000 | 6481.000 | 0.997 | 0.966 | 0.991 | 0.988 | 0.966 |
| drums | 663.000 | 5836.000 | 0.898 | 0.714 | 0.863 | 0.803 | 0.819 |
| electronic | 578.000 | 5921.000 | 0.911 | 0.737 | 0.902 | 0.818 | 0.817 |
| talking | 27.000 | 6472.000 | 0.996 | 0.834 | 0.995 | 0.988 | 0.985 |
| violin | 908.000 | 5591.000 | 0.860 | 0.876 | 0.872 | 0.806 | 0.863 |
| bass | 73.000 | 6426.000 | 0.989 | 0.698 | 0.976 | 0.965 | 0.902 |
| notrock | 19.000 | 6480.000 | 0.997 | 0.493 | 0.996 | 0.991 | 0.983 |
| string | 91.000 | 6408.000 | 0.986 | 0.719 | 0.972 | 0.959 | 0.846 |
| womansinging | 32.000 | 6467.000 | 0.995 | 0.854 | 0.990 | 0.982 | 0.982 |
| guitar | 1166.000 | 5333.000 | 0.821 | 0.821 | 0.851 | 0.691 | 0.843 |
| medieval | 39.000 | 6460.000 | 0.994 | 0.791 | 0.988 | 0.976 | 0.874 |
| clarinet | 16.000 | 6483.000 | 0.998 | 0.893 | 0.992 | 0.989 | 0.950 |
| world | 14.000 | 6485.000 | 0.998 | 0.605 | 0.996 | 0.992 | 0.983 |
| old | 14.000 | 6485.000 | 0.998 | 0.713 | 0.995 | 0.993 | 0.821 |
| middleeastern | 17.000 | 6482.000 | 0.968 | 0.680 | 0.989 | 0.987 | 0.953 |
| baroque | 81.000 | 6418.000 | 0.854 | 0.843 | 0.980 | 0.955 | 0.796 |
| oriental | 50.000 | 6449.000 | 0.992 | 0.725 | 0.974 | 0.980 | 0.936 |
| trumpet | 17.000 | 6482.000 | 0.958 | 0.847 | 0.996 | 0.990 | 0.992 |
| irish | 49.000 | 6450.000 | 0.992 | 0.858 | 0.983 | 0.976 | 0.912 |
| ambient | 419.000 | 6080.000 | 0.936 | 0.866 | 0.936 | 0.858 | 0.814 |
| funk | 32.000 | 6467.000 | 0.995 | 0.870 | 0.987 | 0.990 | 0.944 |
| metal | 159.000 | 6340.000 | 0.842 | 0.912 | 0.973 | 0.939 | 0.887 |
| woman | 186.000 | 6313.000 | 0.971 | 0.889 | 0.956 | 0.914 | 0.948 |
| dark | 36.000 | 6463.000 | 0.994 | 0.798 | 0.992 | 0.979 | 0.856 |
| acoustic | 66.000 | 6433.000 | 0.974 | 0.842 | 0.966 | 0.979 | 0.941 |
| light | 16.000 | 6483.000 | 0.998 | 0.607 | 0.996 | 0.989 | 0.954 |
| repetitive | 24.000 | 6475.000 | 0.948 | 0.755 | 0.996 | 0.992 | 0.989 |
| trance | 51.000 | 6448.000 | 0.992 | 0.757 | 0.985 | 0.975 | 0.881 |
| celtic | 27.000 | 6472.000 | 0.996 | 0.751 | 0.992 | 0.987 | 0.963 |
| electric | 44.000 | 6455.000 | 0.993 | 0.610 | 0.971 | 0.976 | 0.932 |
| malevocals | 123.000 | 6376.000 | 0.930 | 0.776 | 0.958 | 0.952 | 0.872 |
| heavy | 59.000 | 6440.000 | 0.928 | 0.873 | 0.984 | 0.975 | 0.876 |
| jazzy | 68.000 | 6431.000 | 0.990 | 0.806 | 0.939 | 0.968 | 0.919 |
| country | 122.000 | 6377.000 | 0.981 | 0.880 | 0.925 | 0.945 | 0.952 |
| beats | 157.000 | 6342.000 | 0.967 | 0.721 | 0.952 | 0.947 | 0.881 |
| loud | 313.000 | 6186.000 | 0.952 | 0.827 | 0.947 | 0.923 | 0.842 |
| classical | 1544.000 | 4955.000 | 0.762 | 0.848 | 0.768 | 0.569 | 0.788 |
| voices | 39.000 | 6460.000 | 0.994 | 0.842 | 0.990 | 0.976 | 0.965 |
| flutes | 54.000 | 6445.000 | 0.992 | 0.904 | 0.982 | 0.976 | 0.957 |
| choral | 104.000 | 6395.000 | 0.984 | 0.952 | 0.984 | 0.959 | 0.971 |
| harpsichord | 263.000 | 6236.000 | 0.960 | 0.906 | 0.908 | 0.894 | 0.828 |
| eastern | 80.000 | 6419.000 | 0.988 | 0.736 | 0.978 | 0.959 | 0.920 |
| foreign | 51.000 | 6448.000 | 0.992 | 0.824 | 0.974 | 0.970 | 0.980 |
| fast | 616.000 | 5883.000 | 0.905 | 0.723 | 0.902 | 0.804 | 0.799 |
| english | 11.000 | 6488.000 | 0.998 | 0.768 | 0.991 | 0.991 | 0.978 |
| spacey | 27.000 | 6472.000 | 0.996 | 0.857 | 0.994 | 0.983 | 0.892 |
| electro | 87.000 | 6412.000 | 0.985 | 0.686 | 0.980 | 0.957 | 0.874 |
| calm | 33.000 | 6466.000 | 0.984 | 0.653 | 0.989 | 0.985 | 0.921 |
| lute | 15.000 | 6484.000 | 0.998 | 0.922 | 0.990 | 0.984 | 0.937 |
| arabic | 10.000 | 6489.000 | 0.998 | 0.732 | 0.984 | 0.988 | 0.971 |
| voice | 111.000 | 6388.000 | 0.983 | 0.708 | 0.964 | 0.938 | 0.938 |
| vocals | 256.000 | 6243.000 | 0.961 | 0.743 | 0.906 | 0.886 | 0.920 |
| rap | 41.000 | 6458.000 | 0.994 | 0.934 | 0.978 | 0.986 | 0.985 |
| singer | 25.000 | 6474.000 | 0.996 | 0.736 | 0.979 | 0.986 | 0.985 |
| strings | 997.000 | 5502.000 | 0.847 | 0.795 | 0.841 | 0.756 | 0.771 |
| orchestra | 98.000 | 6401.000 | 0.985 | 0.840 | 0.975 | 0.945 | 0.860 |
| guitars | 25.000 | 6474.000 | 0.996 | 0.730 | 0.992 | 0.990 | 0.919 |
| chant | 51.000 | 6448.000 | 0.992 | 0.950 | 0.989 | 0.982 | 0.971 |
| heavymetal | 43.000 | 6456.000 | 0.993 | 0.904 | 0.982 | 0.986 | 0.918 |
| girl | 10.000 | 6489.000 | 0.976 | 0.756 | 0.997 | 0.992 | 0.971 |
| percussion | 26.000 | 6473.000 | 0.862 | 0.729 | 0.993 | 0.981 | 0.961 |
| flute | 455.000 | 6044.000 | 0.930 | 0.927 | 0.944 | 0.889 | 0.902 |
| drum | 89.000 | 6410.000 | 0.986 | 0.689 | 0.976 | 0.960 | 0.931 |
| classic | 235.000 | 6264.000 | 0.964 | 0.760 | 0.938 | 0.888 | 0.807 |
| nosinging | 51.000 | 6448.000 | 0.992 | 0.529 | 0.987 | 0.977 | 0.926 |
| chanting | 32.000 | 6467.000 | 0.995 | 0.945 | 0.994 | 0.984 | 0.969 |
| folk | 48.000 | 6451.000 | 0.993 | 0.802 | 0.983 | 0.973 | 0.968 |
| malesinger | 39.000 | 6460.000 | 0.994 | 0.748 | 0.927 | 0.980 | 0.942 |
| mellow | 29.000 | 6470.000 | 0.992 | 0.649 | 0.992 | 0.987 | 0.958 |
| indian | 313.000 | 6186.000 | 0.952 | 0.813 | 0.942 | 0.878 | 0.927 |
| electronica | 39.000 | 6460.000 | 0.994 | 0.629 | 0.988 | 0.979 | 0.921 |
| women | 22.000 | 6477.000 | 0.997 | 0.886 | 0.995 | 0.990 | 0.981 |
| notopera | 19.000 | 6480.000 | 0.997 | 0.558 | 0.997 | 0.991 | 0.989 |
| noise | 16.000 | 6483.000 | 0.998 | 0.792 | 0.996 | 0.981 | 0.901 |
| soft | 248.000 | 6251.000 | 0.962 | 0.754 | 0.947 | 0.889 | 0.823 |
| femaleopera | 27.000 | 6472.000 | 0.996 | 0.936 | 0.985 | 0.980 | 0.949 |
| malevoice | 155.000 | 6344.000 | 0.976 | 0.766 | 0.949 | 0.940 | 0.933 |
| organ | 17.000 | 6482.000 | 0.997 | 0.786 | 0.951 | 0.973 | 0.867 |
| female | 320.000 | 6179.000 | 0.951 | 0.905 | 0.896 | 0.856 | 0.936 |
| classicalguitar | 38.000 | 6461.000 | 0.994 | 0.958 | 0.973 | 0.975 | 0.932 |
| operatic | 17.000 | 6482.000 | 0.997 | 0.867 | 0.996 | 0.989 | 0.943 |
| airy | 12.000 | 6487.000 | 0.988 | 0.762 | 0.997 | 0.992 | 0.881 |
| malevocal | 271.000 | 6228.000 | 0.958 | 0.810 | 0.908 | 0.911 | 0.889 |
| clapping | 12.000 | 6487.000 | 0.998 | 0.815 | 0.997 | 0.992 | 0.996 |
| choir | 161.000 | 6338.000 | 0.975 | 0.958 | 0.983 | 0.951 | 0.974 |
100 query subset used in Tagatune evaluation
| Tag | Positive Examples | Negative Examples | LabX | Mandel | Manzagol | Marsyas | Zhi |
|---|---|---|---|---|---|---|---|
| sad | 5 | 95.000 | 0.860 | 0.600 | 0.960 | 0.950 | 0.780 |
| nodrums | 4 | 96.000 | 0.960 | 0.470 | 0.960 | 0.950 | 0.770 |
| femalevoice | 6 | 94.000 | 0.940 | 0.840 | 0.900 | 0.910 | 0.890 |
| pop | 10.000 | 90.000 | 0.900 | 0.790 | 0.890 | 0.940 | 0.860 |
| rock | 14.000 | 86.000 | 0.860 | 0.910 | 0.880 | 0.890 | 0.900 |
| birds | 1 | 99.000 | 0.990 | 0.920 | 0.990 | 0.990 | 0.830 |
| harpsicord | 3 | 97.000 | 0.970 | 0.910 | 0.950 | 0.970 | 0.760 |
| strange | 2 | 98.000 | 0.980 | 0.570 | 0.980 | 0.960 | 0.930 |
| novocal | 12.000 | 88.000 | 0.880 | 0.590 | 0.890 | 0.820 | 0.780 |
| solo | 11.000 | 89.000 | 0.890 | 0.790 | 0.890 | 0.870 | 0.850 |
| notenglish | 1 | 99.000 | 0.990 | 0.820 | 0.990 | 0.990 | 0.930 |
| novoice | 4 | 96.000 | 0.960 | 0.640 | 0.960 | 0.940 | 0.930 |
| newage | 12.000 | 88.000 | 0.880 | 0.780 | 0.880 | 0.910 | 0.760 |
| synth | 11.000 | 89.000 | 0.890 | 0.830 | 0.900 | 0.940 | 0.840 |
| upbeat | 4 | 96.000 | 0.960 | 0.780 | 0.950 | 0.960 | 0.910 |
| slow | 44.000 | 56.000 | 0.560 | 0.790 | 0.600 | 0.760 | 0.660 |
| deep | 2 | 98.000 | 0.980 | 0.800 | 0.980 | 0.970 | 0.910 |
| fiddle | 1 | 99.000 | 0.990 | 0.730 | 0.990 | 0.980 | 0.920 |
| orchestral | 2 | 98.000 | 0.980 | 0.700 | 0.980 | 0.980 | 0.710 |
| mansinging | 2 | 98.000 | 0.980 | 0.800 | 0.980 | 0.950 | 0.960 |
| wind | 1 | 99.000 | 0.990 | 0.810 | 0.980 | 0.980 | 0.830 |
| piano | 9 | 91.000 | 0.910 | 0.800 | 0.820 | 0.650 | 0.890 |
| femalesinger | 4 | 96.000 | 0.960 | 0.810 | 0.940 | 0.940 | 0.940 |
| singing | 13.000 | 87.000 | 0.870 | 0.890 | 0.870 | 0.870 | 0.900 |
| quiet | 16.000 | 84.000 | 0.840 | 0.780 | 0.850 | 0.860 | 0.820 |
| tribal | 1 | 99.000 | 0.990 | 0.900 | 0.990 | 0.980 | 1.000 |
| noguitar | 2 | 98.000 | 0.980 | 0.490 | 0.980 | 0.970 | 0.890 |
| femalevocal | 13.000 | 87.000 | 0.870 | 0.850 | 0.830 | 0.910 | 0.890 |
| fastbeat | 1 | 99.000 | 0.990 | 0.850 | 0.990 | 0.980 | 0.920 |
| instrumental | 4 | 96.000 | 0.960 | 0.470 | 0.950 | 0.930 | 0.860 |
| chorus | 3 | 97.000 | 0.970 | 0.950 | 0.970 | 0.940 | 0.960 |
| silence | 1 | 99.000 | 0.960 | 0.920 | 0.990 | 0.980 | 0.960 |
| sax | 2 | 98.000 | 0.970 | 0.890 | 0.970 | 0.980 | 0.930 |
| nobeat | 1 | 99.000 | 0.990 | 0.570 | 0.990 | 0.980 | 0.880 |
| nopiano | 3 | 97.000 | 0.910 | 0.430 | 0.970 | 0.960 | 0.840 |
| novocals | 15.000 | 85.000 | 0.850 | 0.560 | 0.850 | 0.790 | 0.790 |
| low | 5 | 95.000 | 0.950 | 0.770 | 0.950 | 0.940 | 0.830 |
| weird | 3 | 97.000 | 0.970 | 0.710 | 0.970 | 0.920 | 0.930 |
| dance | 4 | 96.000 | 0.960 | 0.950 | 0.940 | 0.950 | 0.940 |
| harp | 3 | 97.000 | 0.970 | 0.900 | 0.970 | 0.950 | 0.950 |
| horns | 3 | 97.000 | 0.970 | 0.850 | 0.970 | 0.950 | 0.950 |
| funky | 1 | 99.000 | 0.990 | 0.850 | 0.990 | 0.970 | 0.970 |
| hardrock | 4 | 96.000 | 0.960 | 0.930 | 0.960 | 0.950 | 0.890 |
| bells | 2 | 98.000 | 0.980 | 0.770 | 0.990 | 0.970 | 0.980 |
| punk | 4 | 96.000 | 0.900 | 0.950 | 0.990 | 0.960 | 0.920 |
| techno | 12.000 | 88.000 | 0.880 | 0.890 | 0.920 | 0.880 | 0.870 |
| modern | 5 | 95.000 | 0.950 | 0.680 | 0.960 | 0.940 | 0.930 |
| violins | 25.000 | 75.000 | 0.730 | 0.790 | 0.770 | 0.780 | 0.760 |
| opera | 6 | 94.000 | 0.940 | 0.940 | 0.910 | 0.860 | 0.940 |
| cello | 21.000 | 79.000 | 0.790 | 0.870 | 0.810 | 0.770 | 0.840 |
| sitar | 1 | 99.000 | 0.990 | 0.910 | 0.950 | 0.930 | 0.980 |
| man | 4 | 96.000 | 0.960 | 0.800 | 0.970 | 0.940 | 0.950 |
| femalevocals | 9 | 91.000 | 0.910 | 0.860 | 0.900 | 0.890 | 0.900 |
| beat | 13.000 | 87.000 | 0.870 | 0.810 | 0.870 | 0.900 | 0.880 |
| vocal | 22.000 | 78.000 | 0.780 | 0.860 | 0.760 | 0.890 | 0.810 |
| jazz | 3 | 97.000 | 0.970 | 0.920 | 0.960 | 0.930 | 0.920 |
| male | 10.000 | 90.000 | 0.900 | 0.820 | 0.870 | 0.900 | 0.880 |
| drums | 14.000 | 86.000 | 0.860 | 0.830 | 0.860 | 0.860 | 0.870 |
| electronic | 16.000 | 84.000 | 0.840 | 0.850 | 0.870 | 0.910 | 0.860 |
| violin | 44.000 | 56.000 | 0.560 | 0.900 | 0.840 | 0.850 | 0.770 |
| bass | 5 | 95.000 | 0.950 | 0.710 | 0.950 | 0.940 | 0.930 |
| string | 12.000 | 88.000 | 0.880 | 0.640 | 0.880 | 0.850 | 0.790 |
| womansinging | 3 | 97.000 | 0.970 | 0.810 | 0.940 | 0.950 | 0.960 |
| guitar | 15.000 | 85.000 | 0.850 | 0.840 | 0.900 | 0.630 | 0.870 |
| medieval | 5 | 95.000 | 0.950 | 0.780 | 0.950 | 0.950 | 0.830 |
| old | 1 | 99.000 | 0.990 | 0.620 | 0.990 | 0.990 | 0.690 |
| middleeastern | 1 | 99.000 | 0.950 | 0.590 | 0.990 | 0.990 | 0.950 |
| baroque | 7 | 93.000 | 0.830 | 0.790 | 0.930 | 0.900 | 0.680 |
| oriental | 1 | 99.000 | 0.990 | 0.680 | 0.970 | 0.990 | 0.990 |
| trumpet | 2 | 98.000 | 0.940 | 0.820 | 0.980 | 0.970 | 0.980 |
| irish | 1 | 99.000 | 0.990 | 0.800 | 0.980 | 0.980 | 0.930 |
| ambient | 14.000 | 86.000 | 0.860 | 0.880 | 0.860 | 0.890 | 0.720 |
| funk | 2 | 98.000 | 0.980 | 0.950 | 0.980 | 0.980 | 0.980 |
| metal | 5 | 95.000 | 0.790 | 0.960 | 0.960 | 0.900 | 0.900 |
| woman | 14.000 | 86.000 | 0.860 | 0.910 | 0.860 | 0.900 | 0.870 |
| dark | 1 | 99.000 | 0.990 | 0.760 | 0.990 | 0.990 | 0.790 |
| acoustic | 3 | 97.000 | 0.960 | 0.900 | 0.960 | 0.980 | 0.980 |
| light | 1 | 99.000 | 0.990 | 0.520 | 0.990 | 0.980 | 0.980 |
| trance | 4 | 96.000 | 0.960 | 0.870 | 0.960 | 0.950 | 0.930 |
| celtic | 1 | 99.000 | 0.990 | 0.670 | 0.990 | 0.980 | 0.920 |
| electric | 1 | 99.000 | 0.990 | 0.750 | 0.960 | 0.980 | 0.940 |
| malevocals | 6 | 94.000 | 0.890 | 0.780 | 0.940 | 0.890 | 0.860 |
| heavy | 4 | 96.000 | 0.930 | 0.880 | 0.970 | 0.940 | 0.890 |
| jazzy | 3 | 97.000 | 0.970 | 0.890 | 0.980 | 0.930 | 0.930 |
| country | 2 | 98.000 | 0.980 | 0.880 | 0.940 | 0.930 | 0.960 |
| beats | 4 | 96.000 | 0.950 | 0.790 | 0.930 | 0.960 | 0.880 |
| loud | 11.000 | 89.000 | 0.890 | 0.850 | 0.890 | 0.930 | 0.880 |
| classical | 48.000 | 52.000 | 0.520 | 0.850 | 0.500 | 0.790 | 0.810 |
| voices | 2 | 98.000 | 0.980 | 0.880 | 0.980 | 0.970 | 0.970 |
| choral | 7 | 93.000 | 0.930 | 0.940 | 0.920 | 0.900 | 0.920 |
| harpsichord | 12.000 | 88.000 | 0.880 | 0.890 | 0.870 | 0.930 | 0.740 |
| eastern | 1 | 99.000 | 0.990 | 0.800 | 0.990 | 0.970 | 0.990 |
| foreign | 2 | 98.000 | 0.980 | 0.840 | 0.960 | 0.960 | 0.960 |
| fast | 17.000 | 83.000 | 0.830 | 0.780 | 0.820 | 0.850 | 0.820 |
| english | 1 | 99.000 | 0.990 | 0.780 | 0.980 | 0.970 | 0.970 |
| spacey | 2 | 98.000 | 0.980 | 0.850 | 0.980 | 0.990 | 0.810 |
| electro | 4 | 96.000 | 0.960 | 0.800 | 0.950 | 0.960 | 0.910 |
| calm | 6 | 94.000 | 0.930 | 0.580 | 0.920 | 0.940 | 0.920 |
| voice | 10.000 | 90.000 | 0.900 | 0.850 | 0.880 | 0.880 | 0.880 |
| vocals | 16.000 | 84.000 | 0.840 | 0.790 | 0.840 | 0.810 | 0.840 |
| singer | 1 | 99.000 | 0.990 | 0.730 | 0.980 | 0.960 | 0.960 |
| strings | 47.000 | 53.000 | 0.530 | 0.910 | 0.550 | 0.880 | 0.820 |
| orchestra | 5 | 95.000 | 0.950 | 0.750 | 0.940 | 0.910 | 0.690 |
| chant | 4 | 96.000 | 0.960 | 0.950 | 0.960 | 0.970 | 0.980 |
| heavymetal | 2 | 98.000 | 0.980 | 0.930 | 0.970 | 0.980 | 0.910 |
| girl | 2 | 98.000 | 0.960 | 0.780 | 0.980 | 0.960 | 0.960 |
| flute | 8 | 92.000 | 0.920 | 0.900 | 0.940 | 0.870 | 0.880 |
| drum | 3 | 97.000 | 0.970 | 0.790 | 0.970 | 0.980 | 0.950 |
| classic | 24.000 | 76.000 | 0.760 | 0.790 | 0.770 | 0.760 | 0.720 |
| nosinging | 3 | 97.000 | 0.970 | 0.420 | 0.970 | 0.970 | 0.920 |
| chanting | 2 | 98.000 | 0.980 | 0.930 | 0.980 | 0.970 | 0.960 |
| folk | 2 | 98.000 | 0.980 | 0.830 | 0.980 | 0.950 | 0.970 |
| malesinger | 1 | 99.000 | 0.990 | 0.760 | 0.980 | 0.950 | 0.920 |
| mellow | 5 | 95.000 | 0.940 | 0.720 | 0.950 | 0.940 | 0.920 |
| indian | 3 | 97.000 | 0.970 | 0.890 | 0.960 | 0.850 | 0.970 |
| electronica | 2 | 98.000 | 0.980 | 0.720 | 0.980 | 0.960 | 0.920 |
| women | 3 | 97.000 | 0.970 | 0.870 | 0.970 | 0.980 | 0.960 |
| soft | 21.000 | 79.000 | 0.790 | 0.670 | 0.770 | 0.730 | 0.750 |
| malevoice | 9 | 91.000 | 0.910 | 0.830 | 0.890 | 0.910 | 0.880 |
| organ | 1 | 99.000 | 0.990 | 0.730 | 0.920 | 0.990 | 0.830 |
| female | 19.000 | 81.000 | 0.810 | 0.940 | 0.850 | 0.900 | 0.850 |
| classicalguitar | 1 | 99.000 | 0.990 | 0.980 | 0.990 | 0.980 | 0.980 |
| airy | 4 | 96.000 | 0.950 | 0.770 | 0.960 | 0.970 | 0.870 |
| malevocal | 11.000 | 89.000 | 0.890 | 0.850 | 0.880 | 0.910 | 0.850 |
| clapping | 2 | 98.000 | 0.980 | 0.870 | 0.980 | 0.970 | 0.980 |
| choir | 7 | 93.000 | 0.930 | 0.950 | 0.940 | 0.910 | 0.940 |
Positive Example Accuracy
Full dataset
| Tag | Positive Examples | Negative Examples | LabX | Mandel | Manzagol | Marsyas | Zhi |
|---|---|---|---|---|---|---|---|
| nostrings | 13.000 | 6486.000 | 0.000 | 0.615 | 0.000 | 0.000 | 0.000 |
| chimes | 22.000 | 6477.000 | 0.045 | 0.545 | 0.000 | 0.045 | 0.136 |
| sad | 18.000 | 6481.000 | 0.111 | 0.778 | 0.056 | 0.000 | 0.667 |
| nodrums | 48.000 | 6451.000 | 0.000 | 0.562 | 0.000 | 0.000 | 0.208 |
| femalevoice | 105.000 | 6394.000 | 0.000 | 0.762 | 0.105 | 0.295 | 0.333 |
| horn | 7 | 6492.000 | 0.000 | 0.286 | 0.000 | 0.000 | 0.143 |
| pop | 196.000 | 6303.000 | 0.000 | 0.827 | 0.459 | 0.444 | 0.505 |
| rock | 601.000 | 5898.000 | 0.000 | 0.847 | 0.426 | 0.907 | 0.839 |
| house | 22.000 | 6477.000 | 0.000 | 0.773 | 0.045 | 0.000 | 0.273 |
| birds | 7 | 6492.000 | 0.000 | 0.429 | 0.000 | 0.143 | 0.714 |
| harpsicord | 59.000 | 6440.000 | 0.000 | 0.780 | 0.169 | 0.525 | 0.780 |
| strange | 22.000 | 6477.000 | 0.000 | 0.909 | 0.000 | 0.091 | 0.136 |
| noflute | 35.000 | 6464.000 | 0.000 | 0.314 | 0.000 | 0.000 | 0.086 |
| novocal | 263.000 | 6236.000 | 0.000 | 0.616 | 0.004 | 0.186 | 0.202 |
| solo | 217.000 | 6282.000 | 0.000 | 0.641 | 0.055 | 0.369 | 0.484 |
| notenglish | 11.000 | 6488.000 | 0.000 | 0.909 | 0.000 | 0.091 | 0.455 |
| novoice | 146.000 | 6353.000 | 0.000 | 0.589 | 0.007 | 0.089 | 0.151 |
| newage | 157.000 | 6342.000 | 0.000 | 0.803 | 0.000 | 0.280 | 0.592 |
| synth | 294.000 | 6205.000 | 0.000 | 0.786 | 0.051 | 0.422 | 0.554 |
| upbeat | 52.000 | 6447.000 | 0.000 | 0.808 | 0.038 | 0.096 | 0.442 |
| slow | 1043.000 | 5456.000 | 0.000 | 0.705 | 0.199 | 0.730 | 0.516 |
| deep | 12.000 | 6487.000 | 0.000 | 0.583 | 0.083 | 0.000 | 0.250 |
| fiddle | 14.000 | 6485.000 | 0.000 | 0.786 | 0.000 | 0.071 | 0.214 |
| orchestral | 12.000 | 6487.000 | 0.000 | 0.500 | 0.000 | 0.000 | 0.750 |
| notclassical | 14.000 | 6485.000 | 0.000 | 0.500 | 0.000 | 0.000 | 0.214 |
| mansinging | 46.000 | 6453.000 | 0.000 | 0.783 | 0.022 | 0.087 | 0.239 |
| wind | 22.000 | 6477.000 | 0.045 | 0.636 | 0.045 | 0.000 | 0.591 |
| piano | 630.000 | 5869.000 | 0.000 | 0.767 | 0.629 | 0.805 | 0.657 |
| spanish | 65.000 | 6434.000 | 0.000 | 0.462 | 0.015 | 0.077 | 0.169 |
| femalesinger | 30.000 | 6469.000 | 0.000 | 0.700 | 0.067 | 0.233 | 0.267 |
| singing | 242.000 | 6257.000 | 0.000 | 0.777 | 0.103 | 0.529 | 0.264 |
| quiet | 263.000 | 6236.000 | 0.000 | 0.719 | 0.030 | 0.707 | 0.620 |
| oboe | 12.000 | 6487.000 | 0.000 | 0.167 | 0.167 | 0.000 | 0.083 |
| tribal | 40.000 | 6459.000 | 0.000 | 0.425 | 0.025 | 0.200 | 0.200 |
| noguitar | 46.000 | 6453.000 | 0.000 | 0.565 | 0.000 | 0.022 | 0.304 |
| femalevocal | 126.000 | 6373.000 | 0.000 | 0.786 | 0.135 | 0.452 | 0.333 |
| fastbeat | 33.000 | 6466.000 | 0.000 | 0.636 | 0.000 | 0.000 | 0.515 |
| hiphop | 32.000 | 6467.000 | 0.000 | 0.594 | 0.219 | 0.000 | 0.312 |
| instrumental | 102.000 | 6397.000 | 0.000 | 0.598 | 0.029 | 0.088 | 0.294 |
| chorus | 50.000 | 6449.000 | 0.000 | 0.760 | 0.400 | 0.000 | 0.700 |
| silence | 12.000 | 6487.000 | 0.000 | 0.833 | 0.167 | 0.000 | 0.333 |
| duet | 18.000 | 6481.000 | 0.000 | 0.278 | 0.000 | 0.000 | 0.167 |
| sax | 20.000 | 6479.000 | 0.000 | 0.200 | 0.000 | 0.050 | 0.000 |
| nobeat | 14.000 | 6485.000 | 0.000 | 0.571 | 0.000 | 0.000 | 0.429 |
| nopiano | 90.000 | 6409.000 | 0.033 | 0.533 | 0.000 | 0.011 | 0.089 |
| novocals | 326.000 | 6173.000 | 0.000 | 0.610 | 0.003 | 0.190 | 0.206 |
| pianosolo | 13.000 | 6486.000 | 0.000 | 0.692 | 0.462 | 0.000 | 0.923 |
| low | 35.000 | 6464.000 | 0.000 | 0.686 | 0.143 | 0.057 | 0.371 |
| weird | 120.000 | 6379.000 | 0.000 | 0.783 | 0.025 | 0.250 | 0.267 |
| dance | 184.000 | 6315.000 | 0.000 | 0.864 | 0.283 | 0.234 | 0.712 |
| harp | 137.000 | 6362.000 | 0.000 | 0.431 | 0.058 | 0.277 | 0.409 |
| horns | 12.000 | 6487.000 | 0.000 | 0.167 | 0.083 | 0.000 | 0.083 |
| funky | 66.000 | 6433.000 | 0.000 | 0.879 | 0.121 | 0.000 | 0.485 |
| hardrock | 80.000 | 6419.000 | 0.000 | 0.963 | 0.100 | 0.000 | 0.950 |
| bells | 36.000 | 6463.000 | 0.000 | 0.528 | 0.028 | 0.083 | 0.111 |
| punk | 42.000 | 6457.000 | 0.000 | 0.786 | 0.595 | 0.000 | 0.810 |
| electricguitar | 51.000 | 6448.000 | 0.000 | 0.588 | 0.059 | 0.176 | 0.588 |
| techno | 827.000 | 5672.000 | 0.000 | 0.926 | 0.336 | 0.900 | 0.790 |
| modern | 73.000 | 6426.000 | 0.000 | 0.699 | 0.055 | 0.082 | 0.260 |
| violins | 258.000 | 6241.000 | 0.000 | 0.841 | 0.155 | 0.275 | 0.636 |
| noviolin | 18.000 | 6481.000 | 0.000 | 0.611 | 0.056 | 0.056 | 0.056 |
| opera | 325.000 | 6174.000 | 0.000 | 0.926 | 0.649 | 0.905 | 0.766 |
| india | 22.000 | 6477.000 | 0.000 | 0.864 | 0.045 | 0.045 | 0.318 |
| cello | 145.000 | 6354.000 | 0.000 | 0.717 | 0.414 | 0.510 | 0.366 |
| sitar | 250.000 | 6249.000 | 0.000 | 0.868 | 0.432 | 0.624 | 0.676 |
| hard | 25.000 | 6474.000 | 0.000 | 0.960 | 0.040 | 0.000 | 0.920 |
| banjo | 15.000 | 6484.000 | 0.000 | 0.133 | 0.067 | 0.067 | 0.333 |
| blues | 42.000 | 6457.000 | 0.000 | 0.643 | 0.119 | 0.190 | 0.048 |
| man | 128.000 | 6371.000 | 0.000 | 0.805 | 0.023 | 0.375 | 0.258 |
| water | 12.000 | 6487.000 | 0.000 | 0.667 | 0.000 | 0.000 | 0.750 |
| femalevocals | 90.000 | 6409.000 | 0.000 | 0.700 | 0.100 | 0.267 | 0.211 |
| beat | 534.000 | 5965.000 | 0.000 | 0.876 | 0.202 | 0.723 | 0.695 |
| vocal | 346.000 | 6153.000 | 0.000 | 0.777 | 0.075 | 0.601 | 0.234 |
| jazz | 88.000 | 6411.000 | 0.000 | 0.761 | 0.182 | 0.284 | 0.466 |
| male | 316.000 | 6183.000 | 0.000 | 0.826 | 0.161 | 0.525 | 0.332 |
| maleopera | 18.000 | 6481.000 | 0.000 | 0.889 | 0.278 | 0.000 | 0.889 |
| drums | 663.000 | 5836.000 | 0.000 | 0.839 | 0.207 | 0.691 | 0.514 |
| electronic | 578.000 | 5921.000 | 0.000 | 0.846 | 0.102 | 0.713 | 0.640 |
| talking | 27.000 | 6472.000 | 0.000 | 0.704 | 0.037 | 0.000 | 0.037 |
| violin | 908.000 | 5591.000 | 0.000 | 0.882 | 0.744 | 0.885 | 0.699 |
| bass | 73.000 | 6426.000 | 0.000 | 0.753 | 0.041 | 0.219 | 0.438 |
| notrock | 19.000 | 6480.000 | 0.000 | 0.368 | 0.000 | 0.053 | 0.105 |
| string | 91.000 | 6408.000 | 0.000 | 0.736 | 0.033 | 0.121 | 0.275 |
| womansinging | 32.000 | 6467.000 | 0.000 | 0.938 | 0.031 | 0.250 | 0.219 |
| guitar | 1166.000 | 5333.000 | 0.000 | 0.701 | 0.359 | 0.886 | 0.522 |
| medieval | 39.000 | 6460.000 | 0.000 | 0.795 | 0.077 | 0.026 | 0.410 |
| clarinet | 16.000 | 6483.000 | 0.000 | 0.625 | 0.000 | 0.000 | 0.375 |
| world | 14.000 | 6485.000 | 0.000 | 0.643 | 0.071 | 0.000 | 0.286 |
| old | 14.000 | 6485.000 | 0.000 | 0.786 | 0.000 | 0.071 | 0.500 |
| middleeastern | 17.000 | 6482.000 | 0.000 | 0.529 | 0.059 | 0.118 | 0.118 |
| baroque | 81.000 | 6418.000 | 0.111 | 0.864 | 0.012 | 0.333 | 0.840 |
| oriental | 50.000 | 6449.000 | 0.000 | 0.700 | 0.100 | 0.100 | 0.320 |
| trumpet | 17.000 | 6482.000 | 0.000 | 0.471 | 0.059 | 0.000 | 0.000 |
| irish | 49.000 | 6450.000 | 0.000 | 0.714 | 0.020 | 0.163 | 0.184 |
| ambient | 419.000 | 6080.000 | 0.000 | 0.788 | 0.014 | 0.726 | 0.644 |
| funk | 32.000 | 6467.000 | 0.000 | 0.875 | 0.125 | 0.000 | 0.344 |
| metal | 159.000 | 6340.000 | 0.019 | 0.899 | 0.126 | 0.000 | 0.969 |
| woman | 186.000 | 6313.000 | 0.000 | 0.801 | 0.091 | 0.565 | 0.457 |
| dark | 36.000 | 6463.000 | 0.000 | 0.861 | 0.028 | 0.000 | 0.361 |
| acoustic | 66.000 | 6433.000 | 0.015 | 0.682 | 0.182 | 0.121 | 0.409 |
| light | 16.000 | 6483.000 | 0.000 | 0.750 | 0.000 | 0.125 | 0.062 |
| repetitive | 24.000 | 6475.000 | 0.000 | 0.417 | 0.000 | 0.000 | 0.000 |
| trance | 51.000 | 6448.000 | 0.000 | 0.804 | 0.020 | 0.098 | 0.510 |
| celtic | 27.000 | 6472.000 | 0.000 | 0.741 | 0.000 | 0.111 | 0.074 |
| electric | 44.000 | 6455.000 | 0.000 | 0.659 | 0.000 | 0.023 | 0.205 |
| malevocals | 123.000 | 6376.000 | 0.130 | 0.821 | 0.154 | 0.276 | 0.382 |
| heavy | 59.000 | 6440.000 | 0.000 | 0.864 | 0.169 | 0.000 | 0.932 |
| jazzy | 68.000 | 6431.000 | 0.000 | 0.824 | 0.324 | 0.191 | 0.485 |
| country | 122.000 | 6377.000 | 0.000 | 0.697 | 0.328 | 0.344 | 0.189 |
| beats | 157.000 | 6342.000 | 0.006 | 0.866 | 0.140 | 0.344 | 0.707 |
| loud | 313.000 | 6186.000 | 0.000 | 0.799 | 0.096 | 0.645 | 0.764 |
| classical | 1544.000 | 4955.000 | 0.000 | 0.852 | 0.158 | 0.994 | 0.720 |
| voices | 39.000 | 6460.000 | 0.000 | 0.615 | 0.000 | 0.077 | 0.333 |
| flutes | 54.000 | 6445.000 | 0.000 | 0.815 | 0.463 | 0.000 | 0.759 |
| choral | 104.000 | 6395.000 | 0.000 | 0.846 | 0.202 | 0.442 | 0.817 |
| harpsichord | 263.000 | 6236.000 | 0.000 | 0.768 | 0.684 | 0.821 | 0.867 |
| eastern | 80.000 | 6419.000 | 0.000 | 0.787 | 0.100 | 0.375 | 0.400 |
| foreign | 51.000 | 6448.000 | 0.000 | 0.725 | 0.039 | 0.275 | 0.216 |
| fast | 616.000 | 5883.000 | 0.000 | 0.701 | 0.094 | 0.646 | 0.433 |
| english | 11.000 | 6488.000 | 0.000 | 0.364 | 0.000 | 0.000 | 0.091 |
| spacey | 27.000 | 6472.000 | 0.000 | 0.852 | 0.000 | 0.111 | 0.444 |
| electro | 87.000 | 6412.000 | 0.000 | 0.805 | 0.011 | 0.138 | 0.471 |
| calm | 33.000 | 6466.000 | 0.000 | 0.545 | 0.000 | 0.061 | 0.182 |
| lute | 15.000 | 6484.000 | 0.000 | 0.867 | 0.200 | 0.000 | 0.733 |
| arabic | 10.000 | 6489.000 | 0.000 | 0.300 | 0.100 | 0.000 | 0.000 |
| voice | 111.000 | 6388.000 | 0.000 | 0.802 | 0.063 | 0.234 | 0.171 |
| vocals | 256.000 | 6243.000 | 0.000 | 0.695 | 0.109 | 0.367 | 0.234 |
| rap | 41.000 | 6458.000 | 0.000 | 0.659 | 0.488 | 0.000 | 0.488 |
| singer | 25.000 | 6474.000 | 0.000 | 0.800 | 0.080 | 0.040 | 0.000 |
| strings | 997.000 | 5502.000 | 0.000 | 0.822 | 0.085 | 0.825 | 0.640 |
| orchestra | 98.000 | 6401.000 | 0.000 | 0.704 | 0.102 | 0.245 | 0.571 |
| guitars | 25.000 | 6474.000 | 0.000 | 0.400 | 0.000 | 0.000 | 0.400 |
| chant | 51.000 | 6448.000 | 0.000 | 0.745 | 0.157 | 0.627 | 0.647 |
| heavymetal | 43.000 | 6456.000 | 0.000 | 0.860 | 0.163 | 0.000 | 0.860 |
| girl | 10.000 | 6489.000 | 0.000 | 0.900 | 0.000 | 0.000 | 0.400 |
| percussion | 26.000 | 6473.000 | 0.077 | 0.692 | 0.000 | 0.077 | 0.308 |
| flute | 455.000 | 6044.000 | 0.000 | 0.807 | 0.569 | 0.732 | 0.631 |
| drum | 89.000 | 6410.000 | 0.000 | 0.798 | 0.056 | 0.180 | 0.281 |
| classic | 235.000 | 6264.000 | 0.000 | 0.881 | 0.102 | 0.340 | 0.604 |
| nosinging | 51.000 | 6448.000 | 0.000 | 0.569 | 0.000 | 0.059 | 0.059 |
| chanting | 32.000 | 6467.000 | 0.000 | 0.406 | 0.031 | 0.156 | 0.438 |
| folk | 48.000 | 6451.000 | 0.000 | 0.500 | 0.021 | 0.083 | 0.146 |
| malesinger | 39.000 | 6460.000 | 0.000 | 0.718 | 0.282 | 0.154 | 0.256 |
| mellow | 29.000 | 6470.000 | 0.000 | 0.483 | 0.000 | 0.000 | 0.069 |
| indian | 313.000 | 6186.000 | 0.000 | 0.770 | 0.137 | 0.594 | 0.278 |
| electronica | 39.000 | 6460.000 | 0.000 | 0.897 | 0.000 | 0.103 | 0.308 |
| women | 22.000 | 6477.000 | 0.000 | 0.818 | 0.045 | 0.182 | 0.409 |
| notopera | 19.000 | 6480.000 | 0.000 | 0.316 | 0.000 | 0.000 | 0.053 |
| noise | 16.000 | 6483.000 | 0.000 | 0.688 | 0.062 | 0.000 | 0.438 |
| soft | 248.000 | 6251.000 | 0.000 | 0.641 | 0.056 | 0.395 | 0.472 |
| femaleopera | 27.000 | 6472.000 | 0.000 | 0.926 | 0.259 | 0.000 | 0.889 |
| malevoice | 155.000 | 6344.000 | 0.000 | 0.806 | 0.071 | 0.297 | 0.252 |
| organ | 17.000 | 6482.000 | 0.000 | 0.294 | 0.059 | 0.059 | 0.235 |
| female | 320.000 | 6179.000 | 0.000 | 0.822 | 0.341 | 0.697 | 0.447 |
| classicalguitar | 38.000 | 6461.000 | 0.000 | 0.789 | 0.263 | 0.000 | 0.868 |
| operatic | 17.000 | 6482.000 | 0.000 | 0.941 | 0.000 | 0.000 | 0.824 |
| airy | 12.000 | 6487.000 | 0.083 | 0.833 | 0.000 | 0.083 | 0.750 |
| malevocal | 271.000 | 6228.000 | 0.000 | 0.856 | 0.277 | 0.465 | 0.373 |
| clapping | 12.000 | 6487.000 | 0.000 | 0.417 | 0.000 | 0.000 | 0.000 |
| choir | 161.000 | 6338.000 | 0.000 | 0.876 | 0.404 | 0.745 | 0.770 |
100 query subset used in Tagatune evaluation
| Tag | Positive Examples | Negative Examples | LabX | Mandel | Manzagol | Marsyas | Zhi |
|---|---|---|---|---|---|---|---|
| sad | 5 | 95.000 | 0.200 | 0.800 | 0.200 | 0.000 | 0.600 |
| nodrums | 4 | 96.000 | 0.000 | 0.750 | 0.000 | 0.000 | 0.500 |
| femalevoice | 6 | 94.000 | 0.000 | 0.833 | 0.000 | 0.333 | 0.167 |
| pop | 10.000 | 90.000 | 0.000 | 0.900 | 0.600 | 0.700 | 0.700 |
| rock | 14.000 | 86.000 | 0.000 | 0.786 | 0.214 | 1.000 | 0.786 |
| birds | 1 | 99.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 |
| harpsicord | 3 | 97.000 | 0.000 | 1.000 | 0.000 | 0.000 | 1.000 |
| strange | 2 | 98.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 |
| novocal | 12.000 | 88.000 | 0.000 | 0.833 | 0.083 | 0.083 | 0.083 |
| solo | 11.000 | 89.000 | 0.000 | 0.364 | 0.091 | 0.182 | 0.182 |
| notenglish | 1 | 99.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| novoice | 4 | 96.000 | 0.000 | 0.750 | 0.000 | 0.000 | 0.000 |
| newage | 12.000 | 88.000 | 0.000 | 0.667 | 0.000 | 0.250 | 0.500 |
| synth | 11.000 | 89.000 | 0.000 | 0.818 | 0.091 | 0.545 | 0.364 |
| upbeat | 4 | 96.000 | 0.000 | 0.750 | 0.000 | 0.000 | 0.500 |
| slow | 44.000 | 56.000 | 0.000 | 0.795 | 0.159 | 0.750 | 0.364 |
| deep | 2 | 98.000 | 0.000 | 0.500 | 0.000 | 0.000 | 0.000 |
| fiddle | 1 | 99.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 |
| orchestral | 2 | 98.000 | 0.000 | 0.500 | 0.000 | 0.000 | 1.000 |
| mansinging | 2 | 98.000 | 0.000 | 1.000 | 0.000 | 0.500 | 0.500 |
| wind | 1 | 99.000 | 0.000 | 1.000 | 0.000 | 0.000 | 1.000 |
| piano | 9 | 91.000 | 0.000 | 0.444 | 0.111 | 0.778 | 0.222 |
| femalesinger | 4 | 96.000 | 0.000 | 0.750 | 0.000 | 0.000 | 0.000 |
| singing | 13.000 | 87.000 | 0.000 | 0.846 | 0.154 | 0.462 | 0.385 |
| quiet | 16.000 | 84.000 | 0.000 | 0.688 | 0.062 | 0.688 | 0.500 |
| tribal | 1 | 99.000 | 0.000 | 1.000 | 0.000 | 0.000 | 1.000 |
| noguitar | 2 | 98.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 |
| femalevocal | 13.000 | 87.000 | 0.000 | 0.692 | 0.154 | 0.538 | 0.308 |
| fastbeat | 1 | 99.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| instrumental | 4 | 96.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.250 |
| chorus | 3 | 97.000 | 0.000 | 0.667 | 0.000 | 0.000 | 0.667 |
| silence | 1 | 99.000 | 0.000 | 1.000 | 0.000 | 0.000 | 1.000 |
| sax | 2 | 98.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| nobeat | 1 | 99.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 |
| nopiano | 3 | 97.000 | 0.000 | 1.000 | 0.000 | 0.333 | 0.000 |
| novocals | 15.000 | 85.000 | 0.000 | 0.800 | 0.000 | 0.200 | 0.067 |
| low | 5 | 95.000 | 0.000 | 0.600 | 0.000 | 0.000 | 0.000 |
| weird | 3 | 97.000 | 0.000 | 0.667 | 0.000 | 0.000 | 0.000 |
| dance | 4 | 96.000 | 0.000 | 1.000 | 0.250 | 0.500 | 0.750 |
| harp | 3 | 97.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.333 |
| horns | 3 | 97.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| funky | 1 | 99.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 |
| hardrock | 4 | 96.000 | 0.000 | 1.000 | 0.000 | 0.000 | 1.000 |
| bells | 2 | 98.000 | 0.000 | 0.500 | 0.500 | 0.000 | 0.000 |
| punk | 4 | 96.000 | 0.000 | 1.000 | 0.750 | 0.000 | 1.000 |
| techno | 12.000 | 88.000 | 0.000 | 0.750 | 0.333 | 0.667 | 0.500 |
| modern | 5 | 95.000 | 0.000 | 0.600 | 0.200 | 0.200 | 0.400 |
| violins | 25.000 | 75.000 | 0.000 | 0.800 | 0.160 | 0.240 | 0.560 |
| opera | 6 | 94.000 | 0.000 | 0.667 | 0.167 | 1.000 | 0.667 |
| cello | 21.000 | 79.000 | 0.000 | 0.810 | 0.238 | 0.333 | 0.333 |
| sitar | 1 | 99.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 |
| man | 4 | 96.000 | 0.000 | 0.500 | 0.250 | 0.500 | 0.000 |
| femalevocals | 9 | 91.000 | 0.000 | 0.667 | 0.000 | 0.333 | 0.222 |
| beat | 13.000 | 87.000 | 0.000 | 0.615 | 0.000 | 0.462 | 0.462 |
| vocal | 22.000 | 78.000 | 0.000 | 0.773 | 0.000 | 0.636 | 0.227 |
| jazz | 3 | 97.000 | 0.000 | 0.667 | 0.000 | 0.000 | 0.667 |
| male | 10.000 | 90.000 | 0.000 | 0.700 | 0.100 | 0.600 | 0.000 |
| drums | 14.000 | 86.000 | 0.000 | 0.786 | 0.143 | 0.571 | 0.429 |
| electronic | 16.000 | 84.000 | 0.000 | 0.625 | 0.188 | 0.625 | 0.500 |
| violin | 44.000 | 56.000 | 0.000 | 0.886 | 0.727 | 0.864 | 0.568 |
| bass | 5 | 95.000 | 0.000 | 0.600 | 0.000 | 0.200 | 0.000 |
| string | 12.000 | 88.000 | 0.000 | 0.750 | 0.000 | 0.000 | 0.167 |
| womansinging | 3 | 97.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 |
| guitar | 15.000 | 85.000 | 0.000 | 0.533 | 0.333 | 0.800 | 0.267 |
| medieval | 5 | 95.000 | 0.000 | 0.800 | 0.000 | 0.000 | 0.000 |
| old | 1 | 99.000 | 0.000 | 1.000 | 0.000 | 0.000 | 1.000 |
| middleeastern | 1 | 99.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| baroque | 7 | 93.000 | 0.000 | 0.571 | 0.000 | 0.000 | 0.714 |
| oriental | 1 | 99.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| trumpet | 2 | 98.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| irish | 1 | 99.000 | 0.000 | 1.000 | 0.000 | 0.000 | 1.000 |
| ambient | 14.000 | 86.000 | 0.000 | 0.714 | 0.000 | 0.786 | 0.500 |
| funk | 2 | 98.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.500 |
| metal | 5 | 95.000 | 0.400 | 1.000 | 0.200 | 0.000 | 1.000 |
| woman | 14.000 | 86.000 | 0.000 | 0.786 | 0.000 | 0.500 | 0.286 |
| dark | 1 | 99.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| acoustic | 3 | 97.000 | 0.000 | 1.000 | 0.000 | 0.333 | 0.333 |
| light | 1 | 99.000 | 0.000 | 1.000 | 0.000 | 0.000 | 1.000 |
| trance | 4 | 96.000 | 0.000 | 0.750 | 0.000 | 0.000 | 0.750 |
| celtic | 1 | 99.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 |
| electric | 1 | 99.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 |
| malevocals | 6 | 94.000 | 0.000 | 0.333 | 0.167 | 0.333 | 0.500 |
| heavy | 4 | 96.000 | 0.000 | 0.500 | 0.250 | 0.000 | 0.750 |
| jazzy | 3 | 97.000 | 0.000 | 0.667 | 1.000 | 0.000 | 1.000 |
| country | 2 | 98.000 | 0.000 | 1.000 | 0.000 | 0.500 | 0.000 |
| beats | 4 | 96.000 | 0.000 | 0.250 | 0.000 | 0.000 | 0.000 |
| loud | 11.000 | 89.000 | 0.000 | 0.818 | 0.091 | 0.455 | 0.727 |
| classical | 48.000 | 52.000 | 0.000 | 0.812 | 0.021 | 1.000 | 0.667 |
| voices | 2 | 98.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.500 |
| choral | 7 | 93.000 | 0.000 | 0.429 | 0.000 | 0.000 | 0.286 |
| harpsichord | 12.000 | 88.000 | 0.000 | 0.750 | 0.417 | 0.833 | 0.917 |
| eastern | 1 | 99.000 | 0.000 | 1.000 | 0.000 | 0.000 | 1.000 |
| foreign | 2 | 98.000 | 0.000 | 0.500 | 0.000 | 0.000 | 0.000 |
| fast | 17.000 | 83.000 | 0.000 | 0.412 | 0.000 | 0.529 | 0.294 |
| english | 1 | 99.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| spacey | 2 | 98.000 | 0.000 | 1.000 | 0.000 | 0.500 | 0.500 |
| electro | 4 | 96.000 | 0.000 | 0.750 | 0.000 | 0.000 | 0.500 |
| calm | 6 | 94.000 | 0.000 | 0.333 | 0.000 | 0.000 | 0.000 |
| voice | 10.000 | 90.000 | 0.000 | 0.900 | 0.000 | 0.300 | 0.100 |
| vocals | 16.000 | 84.000 | 0.000 | 0.688 | 0.188 | 0.375 | 0.125 |
| singer | 1 | 99.000 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 |
| strings | 47.000 | 53.000 | 0.000 | 0.915 | 0.085 | 0.872 | 0.681 |
| orchestra | 5 | 95.000 | 0.000 | 0.400 | 0.000 | 0.000 | 0.000 |
| chant | 4 | 96.000 | 0.000 | 0.500 | 0.000 | 0.250 | 0.500 |
| heavymetal | 2 | 98.000 | 0.000 | 1.000 | 0.000 | 0.000 | 1.000 |
| girl | 2 | 98.000 | 0.000 | 0.500 | 0.000 | 0.000 | 0.500 |
| flute | 8 | 92.000 | 0.000 | 0.500 | 0.375 | 0.375 | 0.125 |
| drum | 3 | 97.000 | 0.000 | 0.667 | 0.000 | 0.333 | 0.000 |
| classic | 24.000 | 76.000 | 0.000 | 0.958 | 0.083 | 0.292 | 0.500 |
| nosinging | 3 | 97.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 |
| chanting | 2 | 98.000 | 0.000 | 0.500 | 0.000 | 0.000 | 0.000 |
| folk | 2 | 98.000 | 0.000 | 0.500 | 0.000 | 0.000 | 0.000 |
| malesinger | 1 | 99.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 |
| mellow | 5 | 95.000 | 0.000 | 0.600 | 0.000 | 0.000 | 0.000 |
| indian | 3 | 97.000 | 0.000 | 0.333 | 0.000 | 0.000 | 0.333 |
| electronica | 2 | 98.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.500 |
| women | 3 | 97.000 | 0.000 | 0.667 | 0.000 | 0.333 | 0.333 |
| soft | 21.000 | 79.000 | 0.000 | 0.429 | 0.000 | 0.286 | 0.190 |
| malevoice | 9 | 91.000 | 0.000 | 0.778 | 0.000 | 0.444 | 0.111 |
| organ | 1 | 99.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| female | 19.000 | 81.000 | 0.000 | 0.842 | 0.421 | 0.579 | 0.316 |
| classicalguitar | 1 | 99.000 | 0.000 | 1.000 | 0.000 | 0.000 | 1.000 |
| airy | 4 | 96.000 | 0.000 | 1.000 | 0.000 | 0.250 | 1.000 |
| malevocal | 11.000 | 89.000 | 0.000 | 0.818 | 0.273 | 0.545 | 0.273 |
| clapping | 2 | 98.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| choir | 7 | 93.000 | 0.000 | 0.571 | 0.143 | 0.286 | 0.429 |
Negative Example Accuracy
Full dataset
| Tag | Positive Examples | Negative Examples | LabX | Mandel | Manzagol | Marsyas | Zhi |
|---|---|---|---|---|---|---|---|
| nostrings | 13.000 | 6486.000 | 1.000 | 0.496 | 1.000 | 0.994 | 0.988 |
| chimes | 22.000 | 6477.000 | 0.989 | 0.779 | 0.998 | 0.995 | 0.984 |
| sad | 18.000 | 6481.000 | 0.896 | 0.705 | 0.998 | 0.992 | 0.863 |
| nodrums | 48.000 | 6451.000 | 1.000 | 0.569 | 0.998 | 0.984 | 0.828 |
| femalevoice | 105.000 | 6394.000 | 1.000 | 0.852 | 0.976 | 0.955 | 0.960 |
| horn | 7 | 6492.000 | 0.997 | 0.802 | 0.998 | 0.992 | 0.979 |
| pop | 196.000 | 6303.000 | 1.000 | 0.746 | 0.890 | 0.936 | 0.848 |
| rock | 601.000 | 5898.000 | 1.000 | 0.881 | 0.972 | 0.859 | 0.861 |
| house | 22.000 | 6477.000 | 1.000 | 0.793 | 0.992 | 0.995 | 0.941 |
| birds | 7 | 6492.000 | 1.000 | 0.922 | 0.998 | 0.992 | 0.924 |
| harpsicord | 59.000 | 6440.000 | 1.000 | 0.930 | 0.986 | 0.968 | 0.865 |
| strange | 22.000 | 6477.000 | 1.000 | 0.587 | 0.999 | 0.989 | 0.963 |
| noflute | 35.000 | 6464.000 | 0.993 | 0.560 | 0.999 | 0.987 | 0.943 |
| novocal | 263.000 | 6236.000 | 1.000 | 0.545 | 0.992 | 0.899 | 0.842 |
| solo | 217.000 | 6282.000 | 0.999 | 0.837 | 0.992 | 0.908 | 0.874 |
| notenglish | 11.000 | 6488.000 | 1.000 | 0.839 | 0.999 | 0.992 | 0.973 |
| novoice | 146.000 | 6353.000 | 1.000 | 0.568 | 0.994 | 0.954 | 0.882 |
| newage | 157.000 | 6342.000 | 1.000 | 0.758 | 0.998 | 0.952 | 0.787 |
| synth | 294.000 | 6205.000 | 1.000 | 0.692 | 0.991 | 0.896 | 0.800 |
| upbeat | 52.000 | 6447.000 | 1.000 | 0.692 | 0.987 | 0.987 | 0.887 |
| slow | 1043.000 | 5456.000 | 1.000 | 0.709 | 0.932 | 0.713 | 0.786 |
| deep | 12.000 | 6487.000 | 1.000 | 0.831 | 0.997 | 0.993 | 0.955 |
| fiddle | 14.000 | 6485.000 | 1.000 | 0.817 | 0.993 | 0.991 | 0.952 |
| orchestral | 12.000 | 6487.000 | 1.000 | 0.779 | 0.997 | 0.990 | 0.908 |
| notclassical | 14.000 | 6485.000 | 1.000 | 0.661 | 0.998 | 0.994 | 0.947 |
| mansinging | 46.000 | 6453.000 | 1.000 | 0.748 | 0.978 | 0.988 | 0.960 |
| wind | 22.000 | 6477.000 | 0.997 | 0.835 | 0.990 | 0.987 | 0.878 |
| piano | 630.000 | 5869.000 | 1.000 | 0.891 | 0.919 | 0.753 | 0.914 |
| spanish | 65.000 | 6434.000 | 1.000 | 0.829 | 0.983 | 0.985 | 0.962 |
| femalesinger | 30.000 | 6469.000 | 1.000 | 0.870 | 0.997 | 0.988 | 0.977 |
| singing | 242.000 | 6257.000 | 1.000 | 0.803 | 0.974 | 0.903 | 0.956 |
| quiet | 263.000 | 6236.000 | 1.000 | 0.795 | 0.996 | 0.898 | 0.821 |
| oboe | 12.000 | 6487.000 | 1.000 | 0.936 | 0.979 | 0.979 | 0.919 |
| tribal | 40.000 | 6459.000 | 1.000 | 0.772 | 0.998 | 0.980 | 0.977 |
| noguitar | 46.000 | 6453.000 | 1.000 | 0.560 | 0.999 | 0.979 | 0.920 |
| femalevocal | 126.000 | 6373.000 | 1.000 | 0.871 | 0.952 | 0.943 | 0.961 |
| fastbeat | 33.000 | 6466.000 | 1.000 | 0.785 | 0.996 | 0.994 | 0.916 |
| hiphop | 32.000 | 6467.000 | 1.000 | 0.907 | 0.996 | 0.996 | 0.981 |
| instrumental | 102.000 | 6397.000 | 0.992 | 0.598 | 0.980 | 0.964 | 0.827 |
| chorus | 50.000 | 6449.000 | 1.000 | 0.941 | 0.987 | 0.978 | 0.967 |
| silence | 12.000 | 6487.000 | 0.985 | 0.901 | 0.994 | 0.993 | 0.961 |
| duet | 18.000 | 6481.000 | 1.000 | 0.892 | 0.989 | 0.991 | 0.940 |
| sax | 20.000 | 6479.000 | 0.977 | 0.898 | 0.990 | 0.991 | 0.963 |
| nobeat | 14.000 | 6485.000 | 0.996 | 0.677 | 0.999 | 0.992 | 0.944 |
| nopiano | 90.000 | 6409.000 | 0.960 | 0.572 | 0.997 | 0.969 | 0.905 |
| novocals | 326.000 | 6173.000 | 1.000 | 0.543 | 0.998 | 0.891 | 0.846 |
| pianosolo | 13.000 | 6486.000 | 1.000 | 0.855 | 0.987 | 0.993 | 0.932 |
| low | 35.000 | 6464.000 | 1.000 | 0.817 | 0.990 | 0.986 | 0.875 |
| weird | 120.000 | 6379.000 | 1.000 | 0.638 | 0.993 | 0.959 | 0.926 |
| dance | 184.000 | 6315.000 | 1.000 | 0.822 | 0.960 | 0.960 | 0.893 |
| harp | 137.000 | 6362.000 | 1.000 | 0.895 | 0.993 | 0.947 | 0.893 |
| horns | 12.000 | 6487.000 | 0.991 | 0.937 | 0.993 | 0.990 | 0.977 |
| funky | 66.000 | 6433.000 | 1.000 | 0.773 | 0.981 | 0.989 | 0.921 |
| hardrock | 80.000 | 6419.000 | 1.000 | 0.893 | 0.992 | 0.980 | 0.886 |
| bells | 36.000 | 6463.000 | 1.000 | 0.732 | 0.995 | 0.986 | 0.977 |
| punk | 42.000 | 6457.000 | 0.971 | 0.928 | 0.962 | 0.993 | 0.924 |
| electricguitar | 51.000 | 6448.000 | 1.000 | 0.822 | 0.995 | 0.985 | 0.870 |
| techno | 827.000 | 5672.000 | 1.000 | 0.819 | 0.973 | 0.846 | 0.890 |
| modern | 73.000 | 6426.000 | 1.000 | 0.591 | 0.985 | 0.975 | 0.903 |
| violins | 258.000 | 6241.000 | 0.978 | 0.818 | 0.965 | 0.949 | 0.858 |
| noviolin | 18.000 | 6481.000 | 1.000 | 0.519 | 0.999 | 0.992 | 0.968 |
| opera | 325.000 | 6174.000 | 1.000 | 0.955 | 0.971 | 0.844 | 0.965 |
| india | 22.000 | 6477.000 | 1.000 | 0.770 | 0.999 | 0.994 | 0.992 |
| cello | 145.000 | 6354.000 | 1.000 | 0.952 | 0.962 | 0.922 | 0.968 |
| sitar | 250.000 | 6249.000 | 1.000 | 0.891 | 0.981 | 0.940 | 0.898 |
| hard | 25.000 | 6474.000 | 0.995 | 0.884 | 0.998 | 0.994 | 0.894 |
| banjo | 15.000 | 6484.000 | 1.000 | 0.961 | 0.996 | 0.979 | 0.943 |
| blues | 42.000 | 6457.000 | 1.000 | 0.923 | 0.992 | 0.987 | 0.995 |
| man | 128.000 | 6371.000 | 1.000 | 0.791 | 0.983 | 0.962 | 0.972 |
| water | 12.000 | 6487.000 | 1.000 | 0.911 | 0.996 | 0.992 | 0.897 |
| femalevocals | 90.000 | 6409.000 | 1.000 | 0.870 | 0.974 | 0.966 | 0.975 |
| beat | 534.000 | 5965.000 | 1.000 | 0.744 | 0.973 | 0.908 | 0.881 |
| vocal | 346.000 | 6153.000 | 1.000 | 0.785 | 0.978 | 0.861 | 0.954 |
| jazz | 88.000 | 6411.000 | 1.000 | 0.812 | 0.951 | 0.967 | 0.911 |
| male | 316.000 | 6183.000 | 1.000 | 0.821 | 0.974 | 0.914 | 0.952 |
| maleopera | 18.000 | 6481.000 | 1.000 | 0.966 | 0.993 | 0.991 | 0.967 |
| drums | 663.000 | 5836.000 | 1.000 | 0.700 | 0.937 | 0.816 | 0.853 |
| electronic | 578.000 | 5921.000 | 1.000 | 0.726 | 0.980 | 0.828 | 0.834 |
| talking | 27.000 | 6472.000 | 1.000 | 0.835 | 0.999 | 0.992 | 0.989 |
| violin | 908.000 | 5591.000 | 1.000 | 0.875 | 0.893 | 0.793 | 0.889 |
| bass | 73.000 | 6426.000 | 1.000 | 0.697 | 0.987 | 0.973 | 0.907 |
| notrock | 19.000 | 6480.000 | 1.000 | 0.494 | 0.999 | 0.994 | 0.985 |
| string | 91.000 | 6408.000 | 1.000 | 0.718 | 0.985 | 0.971 | 0.854 |
| womansinging | 32.000 | 6467.000 | 1.000 | 0.853 | 0.995 | 0.985 | 0.986 |
| guitar | 1166.000 | 5333.000 | 1.000 | 0.847 | 0.958 | 0.649 | 0.913 |
| medieval | 39.000 | 6460.000 | 1.000 | 0.791 | 0.994 | 0.981 | 0.877 |
| clarinet | 16.000 | 6483.000 | 1.000 | 0.894 | 0.995 | 0.991 | 0.952 |
| world | 14.000 | 6485.000 | 1.000 | 0.605 | 0.998 | 0.994 | 0.985 |
| old | 14.000 | 6485.000 | 1.000 | 0.713 | 0.997 | 0.995 | 0.821 |
| middleeastern | 17.000 | 6482.000 | 0.971 | 0.680 | 0.991 | 0.989 | 0.956 |
| baroque | 81.000 | 6418.000 | 0.863 | 0.842 | 0.992 | 0.962 | 0.795 |
| oriental | 50.000 | 6449.000 | 1.000 | 0.726 | 0.980 | 0.987 | 0.941 |
| trumpet | 17.000 | 6482.000 | 0.961 | 0.848 | 0.999 | 0.993 | 0.995 |
| irish | 49.000 | 6450.000 | 1.000 | 0.859 | 0.991 | 0.982 | 0.917 |
| ambient | 419.000 | 6080.000 | 1.000 | 0.872 | 0.999 | 0.867 | 0.825 |
| funk | 32.000 | 6467.000 | 1.000 | 0.870 | 0.991 | 0.995 | 0.947 |
| metal | 159.000 | 6340.000 | 0.862 | 0.912 | 0.994 | 0.963 | 0.885 |
| woman | 186.000 | 6313.000 | 1.000 | 0.892 | 0.981 | 0.925 | 0.962 |
| dark | 36.000 | 6463.000 | 1.000 | 0.798 | 0.997 | 0.984 | 0.859 |
| acoustic | 66.000 | 6433.000 | 0.984 | 0.844 | 0.974 | 0.988 | 0.947 |
| light | 16.000 | 6483.000 | 1.000 | 0.607 | 0.998 | 0.991 | 0.956 |
| repetitive | 24.000 | 6475.000 | 0.952 | 0.756 | 1.000 | 0.995 | 0.993 |
| trance | 51.000 | 6448.000 | 1.000 | 0.757 | 0.993 | 0.982 | 0.884 |
| celtic | 27.000 | 6472.000 | 1.000 | 0.751 | 0.996 | 0.991 | 0.967 |
| electric | 44.000 | 6455.000 | 1.000 | 0.610 | 0.978 | 0.982 | 0.937 |
| malevocals | 123.000 | 6376.000 | 0.945 | 0.775 | 0.973 | 0.965 | 0.881 |
| heavy | 59.000 | 6440.000 | 0.936 | 0.873 | 0.991 | 0.984 | 0.875 |
| jazzy | 68.000 | 6431.000 | 1.000 | 0.805 | 0.945 | 0.976 | 0.924 |
| country | 122.000 | 6377.000 | 1.000 | 0.883 | 0.936 | 0.956 | 0.966 |
| beats | 157.000 | 6342.000 | 0.991 | 0.718 | 0.972 | 0.962 | 0.885 |
| loud | 313.000 | 6186.000 | 1.000 | 0.828 | 0.990 | 0.937 | 0.846 |
| classical | 1544.000 | 4955.000 | 1.000 | 0.846 | 0.957 | 0.437 | 0.810 |
| voices | 39.000 | 6460.000 | 1.000 | 0.843 | 0.996 | 0.982 | 0.969 |
| flutes | 54.000 | 6445.000 | 1.000 | 0.905 | 0.986 | 0.984 | 0.959 |
| choral | 104.000 | 6395.000 | 1.000 | 0.954 | 0.996 | 0.967 | 0.974 |
| harpsichord | 263.000 | 6236.000 | 1.000 | 0.912 | 0.917 | 0.897 | 0.826 |
| eastern | 80.000 | 6419.000 | 1.000 | 0.735 | 0.989 | 0.967 | 0.927 |
| foreign | 51.000 | 6448.000 | 1.000 | 0.825 | 0.981 | 0.975 | 0.986 |
| fast | 616.000 | 5883.000 | 1.000 | 0.725 | 0.987 | 0.820 | 0.838 |
| english | 11.000 | 6488.000 | 1.000 | 0.768 | 0.993 | 0.992 | 0.979 |
| spacey | 27.000 | 6472.000 | 1.000 | 0.857 | 0.998 | 0.987 | 0.894 |
| electro | 87.000 | 6412.000 | 0.998 | 0.684 | 0.993 | 0.968 | 0.879 |
| calm | 33.000 | 6466.000 | 0.989 | 0.653 | 0.994 | 0.989 | 0.925 |
| lute | 15.000 | 6484.000 | 1.000 | 0.922 | 0.992 | 0.987 | 0.937 |
| arabic | 10.000 | 6489.000 | 1.000 | 0.733 | 0.985 | 0.990 | 0.973 |
| voice | 111.000 | 6388.000 | 1.000 | 0.707 | 0.980 | 0.951 | 0.951 |
| vocals | 256.000 | 6243.000 | 1.000 | 0.745 | 0.939 | 0.907 | 0.948 |
| rap | 41.000 | 6458.000 | 1.000 | 0.935 | 0.981 | 0.992 | 0.989 |
| singer | 25.000 | 6474.000 | 1.000 | 0.736 | 0.983 | 0.989 | 0.989 |
| strings | 997.000 | 5502.000 | 1.000 | 0.790 | 0.978 | 0.744 | 0.794 |
| orchestra | 98.000 | 6401.000 | 1.000 | 0.843 | 0.988 | 0.955 | 0.865 |
| guitars | 25.000 | 6474.000 | 1.000 | 0.731 | 0.996 | 0.994 | 0.921 |
| chant | 51.000 | 6448.000 | 1.000 | 0.952 | 0.996 | 0.984 | 0.974 |
| heavymetal | 43.000 | 6456.000 | 1.000 | 0.905 | 0.988 | 0.993 | 0.919 |
| girl | 10.000 | 6489.000 | 0.978 | 0.755 | 0.999 | 0.994 | 0.972 |
| percussion | 26.000 | 6473.000 | 0.865 | 0.729 | 0.997 | 0.985 | 0.964 |
| flute | 455.000 | 6044.000 | 1.000 | 0.936 | 0.973 | 0.901 | 0.923 |
| drum | 89.000 | 6410.000 | 1.000 | 0.688 | 0.989 | 0.971 | 0.940 |
| classic | 235.000 | 6264.000 | 1.000 | 0.756 | 0.969 | 0.908 | 0.815 |
| nosinging | 51.000 | 6448.000 | 1.000 | 0.529 | 0.995 | 0.984 | 0.933 |
| chanting | 32.000 | 6467.000 | 1.000 | 0.948 | 0.999 | 0.988 | 0.972 |
| folk | 48.000 | 6451.000 | 1.000 | 0.805 | 0.991 | 0.980 | 0.974 |
| malesinger | 39.000 | 6460.000 | 1.000 | 0.748 | 0.931 | 0.985 | 0.946 |
| mellow | 29.000 | 6470.000 | 0.996 | 0.650 | 0.997 | 0.992 | 0.962 |
| indian | 313.000 | 6186.000 | 1.000 | 0.815 | 0.983 | 0.892 | 0.960 |
| electronica | 39.000 | 6460.000 | 1.000 | 0.627 | 0.993 | 0.984 | 0.925 |
| women | 22.000 | 6477.000 | 1.000 | 0.887 | 0.998 | 0.993 | 0.983 |
| notopera | 19.000 | 6480.000 | 1.000 | 0.559 | 1.000 | 0.994 | 0.992 |
| noise | 16.000 | 6483.000 | 1.000 | 0.793 | 0.998 | 0.984 | 0.902 |
| soft | 248.000 | 6251.000 | 1.000 | 0.758 | 0.983 | 0.908 | 0.837 |
| femaleopera | 27.000 | 6472.000 | 1.000 | 0.936 | 0.988 | 0.984 | 0.949 |
| malevoice | 155.000 | 6344.000 | 1.000 | 0.765 | 0.970 | 0.956 | 0.950 |
| organ | 17.000 | 6482.000 | 1.000 | 0.787 | 0.954 | 0.975 | 0.868 |
| female | 320.000 | 6179.000 | 1.000 | 0.909 | 0.925 | 0.864 | 0.961 |
| classicalguitar | 38.000 | 6461.000 | 1.000 | 0.959 | 0.978 | 0.980 | 0.932 |
| operatic | 17.000 | 6482.000 | 1.000 | 0.866 | 0.999 | 0.992 | 0.943 |
| airy | 12.000 | 6487.000 | 0.990 | 0.762 | 0.998 | 0.994 | 0.881 |
| malevocal | 271.000 | 6228.000 | 1.000 | 0.808 | 0.935 | 0.931 | 0.911 |
| clapping | 12.000 | 6487.000 | 1.000 | 0.816 | 0.999 | 0.994 | 0.998 |
| choir | 161.000 | 6338.000 | 1.000 | 0.960 | 0.998 | 0.956 | 0.979 |
100 query subset used in Tagatune evaluation
| Tag | Positive Examples | Negative Examples | LabX | Mandel | Manzagol | Marsyas | Zhi |
|---|---|---|---|---|---|---|---|
| sad | 5 | 95.000 | 0.895 | 0.589 | 1.000 | 1.000 | 0.789 |
| nodrums | 4 | 96.000 | 1.000 | 0.458 | 1.000 | 0.990 | 0.781 |
| femalevoice | 6 | 94.000 | 1.000 | 0.840 | 0.957 | 0.947 | 0.936 |
| pop | 10.000 | 90.000 | 1.000 | 0.778 | 0.922 | 0.967 | 0.878 |
| rock | 14.000 | 86.000 | 1.000 | 0.930 | 0.988 | 0.872 | 0.919 |
| birds | 1 | 99.000 | 1.000 | 0.919 | 1.000 | 1.000 | 0.838 |
| harpsicord | 3 | 97.000 | 1.000 | 0.907 | 0.979 | 1.000 | 0.753 |
| strange | 2 | 98.000 | 1.000 | 0.561 | 1.000 | 0.980 | 0.949 |
| novocal | 12.000 | 88.000 | 1.000 | 0.557 | 1.000 | 0.920 | 0.875 |
| solo | 11.000 | 89.000 | 1.000 | 0.843 | 0.989 | 0.955 | 0.933 |
| notenglish | 1 | 99.000 | 1.000 | 0.828 | 1.000 | 1.000 | 0.939 |
| novoice | 4 | 96.000 | 1.000 | 0.635 | 1.000 | 0.979 | 0.969 |
| newage | 12.000 | 88.000 | 1.000 | 0.795 | 1.000 | 1.000 | 0.795 |
| synth | 11.000 | 89.000 | 1.000 | 0.831 | 1.000 | 0.989 | 0.899 |
| upbeat | 4 | 96.000 | 1.000 | 0.781 | 0.990 | 1.000 | 0.927 |
| slow | 44.000 | 56.000 | 1.000 | 0.786 | 0.946 | 0.768 | 0.893 |
| deep | 2 | 98.000 | 1.000 | 0.806 | 1.000 | 0.990 | 0.929 |
| fiddle | 1 | 99.000 | 1.000 | 0.727 | 1.000 | 0.990 | 0.929 |
| orchestral | 2 | 98.000 | 1.000 | 0.704 | 1.000 | 1.000 | 0.704 |
| mansinging | 2 | 98.000 | 1.000 | 0.796 | 1.000 | 0.959 | 0.969 |
| wind | 1 | 99.000 | 1.000 | 0.808 | 0.990 | 0.990 | 0.828 |
| piano | 9 | 91.000 | 1.000 | 0.835 | 0.890 | 0.637 | 0.956 |
| femalesinger | 4 | 96.000 | 1.000 | 0.812 | 0.979 | 0.979 | 0.979 |
| singing | 13.000 | 87.000 | 1.000 | 0.897 | 0.977 | 0.931 | 0.977 |
| quiet | 16.000 | 84.000 | 1.000 | 0.798 | 1.000 | 0.893 | 0.881 |
| tribal | 1 | 99.000 | 1.000 | 0.899 | 1.000 | 0.990 | 1.000 |
| noguitar | 2 | 98.000 | 1.000 | 0.480 | 1.000 | 0.990 | 0.908 |
| femalevocal | 13.000 | 87.000 | 1.000 | 0.874 | 0.931 | 0.966 | 0.977 |
| fastbeat | 1 | 99.000 | 1.000 | 0.859 | 1.000 | 0.990 | 0.929 |
| instrumental | 4 | 96.000 | 1.000 | 0.448 | 0.990 | 0.969 | 0.885 |
| chorus | 3 | 97.000 | 1.000 | 0.959 | 1.000 | 0.969 | 0.969 |
| silence | 1 | 99.000 | 0.970 | 0.919 | 1.000 | 0.990 | 0.960 |
| sax | 2 | 98.000 | 0.990 | 0.908 | 0.990 | 1.000 | 0.949 |
| nobeat | 1 | 99.000 | 1.000 | 0.566 | 1.000 | 0.990 | 0.889 |
| nopiano | 3 | 97.000 | 0.938 | 0.412 | 1.000 | 0.979 | 0.866 |
| novocals | 15.000 | 85.000 | 1.000 | 0.518 | 1.000 | 0.894 | 0.918 |
| low | 5 | 95.000 | 1.000 | 0.779 | 1.000 | 0.989 | 0.874 |
| weird | 3 | 97.000 | 1.000 | 0.711 | 1.000 | 0.948 | 0.959 |
| dance | 4 | 96.000 | 1.000 | 0.948 | 0.969 | 0.969 | 0.948 |
| harp | 3 | 97.000 | 1.000 | 0.928 | 1.000 | 0.979 | 0.969 |
| horns | 3 | 97.000 | 1.000 | 0.876 | 1.000 | 0.979 | 0.979 |
| funky | 1 | 99.000 | 1.000 | 0.848 | 1.000 | 0.980 | 0.980 |
| hardrock | 4 | 96.000 | 1.000 | 0.927 | 1.000 | 0.990 | 0.885 |
| bells | 2 | 98.000 | 1.000 | 0.776 | 1.000 | 0.990 | 1.000 |
| punk | 4 | 96.000 | 0.938 | 0.948 | 1.000 | 1.000 | 0.917 |
| techno | 12.000 | 88.000 | 1.000 | 0.909 | 1.000 | 0.909 | 0.920 |
| modern | 5 | 95.000 | 1.000 | 0.684 | 1.000 | 0.979 | 0.958 |
| violins | 25.000 | 75.000 | 0.973 | 0.787 | 0.973 | 0.960 | 0.827 |
| opera | 6 | 94.000 | 1.000 | 0.957 | 0.957 | 0.851 | 0.957 |
| cello | 21.000 | 79.000 | 1.000 | 0.886 | 0.962 | 0.886 | 0.975 |
| sitar | 1 | 99.000 | 1.000 | 0.919 | 0.960 | 0.939 | 0.980 |
| man | 4 | 96.000 | 1.000 | 0.812 | 1.000 | 0.958 | 0.990 |
| femalevocals | 9 | 91.000 | 1.000 | 0.879 | 0.989 | 0.945 | 0.967 |
| beat | 13.000 | 87.000 | 1.000 | 0.839 | 1.000 | 0.966 | 0.943 |
| vocal | 22.000 | 78.000 | 1.000 | 0.885 | 0.974 | 0.962 | 0.974 |
| jazz | 3 | 97.000 | 1.000 | 0.928 | 0.990 | 0.959 | 0.928 |
| male | 10.000 | 90.000 | 1.000 | 0.833 | 0.956 | 0.933 | 0.978 |
| drums | 14.000 | 86.000 | 1.000 | 0.837 | 0.977 | 0.907 | 0.942 |
| electronic | 16.000 | 84.000 | 1.000 | 0.893 | 1.000 | 0.964 | 0.929 |
| violin | 44.000 | 56.000 | 1.000 | 0.911 | 0.929 | 0.839 | 0.929 |
| bass | 5 | 95.000 | 1.000 | 0.716 | 1.000 | 0.979 | 0.979 |
| string | 12.000 | 88.000 | 1.000 | 0.625 | 1.000 | 0.966 | 0.875 |
| womansinging | 3 | 97.000 | 1.000 | 0.804 | 0.969 | 0.979 | 0.990 |
| guitar | 15.000 | 85.000 | 1.000 | 0.894 | 1.000 | 0.600 | 0.976 |
| medieval | 5 | 95.000 | 1.000 | 0.779 | 1.000 | 1.000 | 0.874 |
| old | 1 | 99.000 | 1.000 | 0.616 | 1.000 | 1.000 | 0.687 |
| middleeastern | 1 | 99.000 | 0.960 | 0.596 | 1.000 | 1.000 | 0.960 |
| baroque | 7 | 93.000 | 0.892 | 0.806 | 1.000 | 0.968 | 0.677 |
| oriental | 1 | 99.000 | 1.000 | 0.687 | 0.980 | 1.000 | 1.000 |
| trumpet | 2 | 98.000 | 0.959 | 0.837 | 1.000 | 0.990 | 1.000 |
| irish | 1 | 99.000 | 1.000 | 0.798 | 0.990 | 0.990 | 0.929 |
| ambient | 14.000 | 86.000 | 1.000 | 0.907 | 1.000 | 0.907 | 0.756 |
| funk | 2 | 98.000 | 1.000 | 0.949 | 1.000 | 1.000 | 0.990 |
| metal | 5 | 95.000 | 0.811 | 0.958 | 1.000 | 0.947 | 0.895 |
| woman | 14.000 | 86.000 | 1.000 | 0.930 | 1.000 | 0.965 | 0.965 |
| dark | 1 | 99.000 | 1.000 | 0.768 | 1.000 | 1.000 | 0.798 |
| acoustic | 3 | 97.000 | 0.990 | 0.897 | 0.990 | 1.000 | 1.000 |
| light | 1 | 99.000 | 1.000 | 0.515 | 1.000 | 0.990 | 0.980 |
| trance | 4 | 96.000 | 1.000 | 0.875 | 1.000 | 0.990 | 0.938 |
| celtic | 1 | 99.000 | 1.000 | 0.667 | 1.000 | 0.990 | 0.929 |
| electric | 1 | 99.000 | 1.000 | 0.747 | 0.970 | 0.990 | 0.949 |
| malevocals | 6 | 94.000 | 0.947 | 0.809 | 0.989 | 0.926 | 0.883 |
| heavy | 4 | 96.000 | 0.969 | 0.896 | 1.000 | 0.979 | 0.896 |
| jazzy | 3 | 97.000 | 1.000 | 0.897 | 0.979 | 0.959 | 0.928 |
| country | 2 | 98.000 | 1.000 | 0.878 | 0.959 | 0.939 | 0.980 |
| beats | 4 | 96.000 | 0.990 | 0.812 | 0.969 | 1.000 | 0.917 |
| loud | 11.000 | 89.000 | 1.000 | 0.854 | 0.989 | 0.989 | 0.899 |
| classical | 48.000 | 52.000 | 1.000 | 0.885 | 0.942 | 0.596 | 0.942 |
| voices | 2 | 98.000 | 1.000 | 0.878 | 1.000 | 0.990 | 0.980 |
| choral | 7 | 93.000 | 1.000 | 0.978 | 0.989 | 0.968 | 0.968 |
| harpsichord | 12.000 | 88.000 | 1.000 | 0.909 | 0.932 | 0.943 | 0.716 |
| eastern | 1 | 99.000 | 1.000 | 0.798 | 1.000 | 0.980 | 0.990 |
| foreign | 2 | 98.000 | 1.000 | 0.847 | 0.980 | 0.980 | 0.980 |
| fast | 17.000 | 83.000 | 1.000 | 0.855 | 0.988 | 0.916 | 0.928 |
| english | 1 | 99.000 | 1.000 | 0.788 | 0.990 | 0.980 | 0.980 |
| spacey | 2 | 98.000 | 1.000 | 0.847 | 1.000 | 1.000 | 0.816 |
| electro | 4 | 96.000 | 1.000 | 0.802 | 0.990 | 1.000 | 0.927 |
| calm | 6 | 94.000 | 0.989 | 0.596 | 0.979 | 1.000 | 0.979 |
| voice | 10.000 | 90.000 | 1.000 | 0.844 | 0.978 | 0.944 | 0.967 |
| vocals | 16.000 | 84.000 | 1.000 | 0.810 | 0.964 | 0.893 | 0.976 |
| singer | 1 | 99.000 | 1.000 | 0.727 | 0.980 | 0.970 | 0.970 |
| strings | 47.000 | 53.000 | 1.000 | 0.906 | 0.962 | 0.887 | 0.943 |
| orchestra | 5 | 95.000 | 1.000 | 0.768 | 0.989 | 0.958 | 0.726 |
| chant | 4 | 96.000 | 1.000 | 0.969 | 1.000 | 1.000 | 1.000 |
| heavymetal | 2 | 98.000 | 1.000 | 0.929 | 0.990 | 1.000 | 0.908 |
| girl | 2 | 98.000 | 0.980 | 0.786 | 1.000 | 0.980 | 0.969 |
| flute | 8 | 92.000 | 1.000 | 0.935 | 0.989 | 0.913 | 0.946 |
| drum | 3 | 97.000 | 1.000 | 0.794 | 1.000 | 1.000 | 0.979 |
| classic | 24.000 | 76.000 | 1.000 | 0.737 | 0.987 | 0.908 | 0.789 |
| nosinging | 3 | 97.000 | 1.000 | 0.402 | 1.000 | 1.000 | 0.948 |
| chanting | 2 | 98.000 | 1.000 | 0.939 | 1.000 | 0.990 | 0.980 |
| folk | 2 | 98.000 | 1.000 | 0.837 | 1.000 | 0.969 | 0.990 |
| malesinger | 1 | 99.000 | 1.000 | 0.758 | 0.980 | 0.949 | 0.929 |
| mellow | 5 | 95.000 | 0.989 | 0.726 | 1.000 | 0.989 | 0.968 |
| indian | 3 | 97.000 | 1.000 | 0.907 | 0.990 | 0.876 | 0.990 |
| electronica | 2 | 98.000 | 1.000 | 0.714 | 1.000 | 0.980 | 0.929 |
| women | 3 | 97.000 | 1.000 | 0.876 | 1.000 | 1.000 | 0.979 |
| soft | 21.000 | 79.000 | 1.000 | 0.734 | 0.975 | 0.848 | 0.899 |
| malevoice | 9 | 91.000 | 1.000 | 0.835 | 0.978 | 0.956 | 0.956 |
| organ | 1 | 99.000 | 1.000 | 0.737 | 0.929 | 1.000 | 0.838 |
| female | 19.000 | 81.000 | 1.000 | 0.963 | 0.951 | 0.975 | 0.975 |
| classicalguitar | 1 | 99.000 | 1.000 | 0.980 | 1.000 | 0.990 | 0.980 |
| airy | 4 | 96.000 | 0.990 | 0.760 | 1.000 | 1.000 | 0.865 |
| malevocal | 11.000 | 89.000 | 1.000 | 0.854 | 0.955 | 0.955 | 0.921 |
| clapping | 2 | 98.000 | 1.000 | 0.888 | 1.000 | 0.990 | 1.000 |
| choir | 7 | 93.000 | 1.000 | 0.978 | 1.000 | 0.957 | 0.978 |
Overall Summary Results (MIREX Statistical evaluation - Affinity)
Full dataset
| Measure | Mandel | Manzagol | Marsyas | Zhi |
|---|---|---|---|---|
| Average AUC-ROC Tag | 0.821 | 0.750 | 0.831 | 0.673 |
| Average AUC-ROC Clip | 0.886 | 0.810 | 0.933 | 0.748 |
| Precision at 3 | 0.323 | 0.255 | 0.440 | 0.224 |
| Precision at 6 | 0.245 | 0.194 | 0.314 | 0.192 |
| Precision at 9 | 0.197 | 0.159 | 0.244 | 0.168 |
| Precision at 12 | 0.167 | 0.136 | 0.201 | 0.146 |
| Precision at 15 | 0.145 | 0.119 | 0.172 | 0.127 |
100 query subset used in Tagatune evaluation
| Measure | Mandel | Manzagol | Marsyas | Zhi |
|---|---|---|---|---|
| Average AUC-ROC Tag | 0.646 | 0.566 | 0.636 | 0.499 |
| Average AUC-ROC Clip | 0.873 | 0.766 | 0.916 | 0.689 |
| Precision at 3 | 0.613 | 0.477 | 0.743 | 0.363 |
| Precision at 6 | 0.508 | 0.383 | 0.590 | 0.338 |
| Precision at 9 | 0.434 | 0.322 | 0.489 | 0.310 |
| Precision at 12 | 0.388 | 0.283 | 0.431 | 0.278 |
| Precision at 15 | 0.339 | 0.252 | 0.383 | 0.248 |
AUC-ROC Tag
Full dataset
| Tag | Mandel | Manzagol | Marsyas | Zhi |
|---|---|---|---|---|
| nostrings | 0.552 | 0.599 | 0.663 | 0.494 |
| chimes | 0.732 | 0.749 | 0.822 | 0.561 |
| sad | 0.842 | 0.662 | 0.816 | 0.785 |
| nodrums | 0.600 | 0.549 | 0.583 | 0.517 |
| femalevoice | 0.894 | 0.731 | 0.786 | 0.648 |
| horn | 0.435 | 0.683 | 0.760 | 0.560 |
| pop | 0.872 | 0.819 | 0.891 | 0.687 |
| rock | 0.947 | 0.926 | 0.957 | 0.879 |
| house | 0.870 | 0.651 | 0.949 | 0.607 |
| birds | 0.819 | 0.653 | 0.820 | 0.823 |
| harpsicord | 0.946 | 0.944 | 0.961 | 0.855 |
| strange | 0.801 | 0.736 | 0.744 | 0.550 |
| noflute | 0.454 | 0.542 | 0.532 | 0.516 |
| novocal | 0.617 | 0.538 | 0.626 | 0.519 |
| solo | 0.843 | 0.746 | 0.805 | 0.686 |
| notenglish | 0.861 | 0.587 | 0.822 | 0.717 |
| novoice | 0.623 | 0.538 | 0.578 | 0.517 |
| newage | 0.856 | 0.706 | 0.811 | 0.697 |
| synth | 0.816 | 0.728 | 0.778 | 0.690 |
| upbeat | 0.814 | 0.702 | 0.841 | 0.674 |
| slow | 0.778 | 0.733 | 0.797 | 0.662 |
| deep | 0.873 | 0.835 | 0.904 | 0.602 |
| fiddle | 0.895 | 0.825 | 0.844 | 0.585 |
| orchestral | 0.782 | 0.718 | 0.796 | 0.841 |
| notclassical | 0.605 | 0.498 | 0.752 | 0.578 |
| mansinging | 0.858 | 0.698 | 0.886 | 0.600 |
| wind | 0.855 | 0.779 | 0.866 | 0.752 |
| piano | 0.913 | 0.861 | 0.875 | 0.797 |
| spanish | 0.762 | 0.699 | 0.759 | 0.566 |
| femalesinger | 0.864 | 0.668 | 0.831 | 0.623 |
| singing | 0.866 | 0.720 | 0.847 | 0.611 |
| quiet | 0.854 | 0.777 | 0.906 | 0.736 |
| oboe | 0.806 | 0.869 | 0.863 | 0.504 |
| tribal | 0.732 | 0.737 | 0.761 | 0.588 |
| noguitar | 0.611 | 0.534 | 0.579 | 0.615 |
| femalevocal | 0.896 | 0.739 | 0.860 | 0.648 |
| fastbeat | 0.827 | 0.855 | 0.908 | 0.728 |
| hiphop | 0.901 | 0.856 | 0.912 | 0.647 |
| instrumental | 0.630 | 0.561 | 0.704 | 0.563 |
| chorus | 0.938 | 0.915 | 0.932 | 0.836 |
| silence | 0.927 | 0.936 | 0.988 | 0.648 |
| duet | 0.707 | 0.681 | 0.726 | 0.553 |
| sax | 0.683 | 0.666 | 0.663 | 0.482 |
| nobeat | 0.687 | 0.549 | 0.651 | 0.684 |
| nopiano | 0.559 | 0.480 | 0.542 | 0.496 |
| novocals | 0.613 | 0.538 | 0.640 | 0.526 |
| pianosolo | 0.906 | 0.970 | 0.959 | 0.937 |
| low | 0.830 | 0.814 | 0.887 | 0.629 |
| weird | 0.788 | 0.573 | 0.790 | 0.599 |
| dance | 0.910 | 0.850 | 0.925 | 0.813 |
| harp | 0.814 | 0.846 | 0.824 | 0.650 |
| horns | 0.637 | 0.659 | 0.524 | 0.530 |
| funky | 0.904 | 0.860 | 0.897 | 0.703 |
| hardrock | 0.976 | 0.940 | 0.969 | 0.948 |
| bells | 0.654 | 0.678 | 0.799 | 0.544 |
| punk | 0.939 | 0.958 | 0.958 | 0.879 |
| electricguitar | 0.834 | 0.790 | 0.836 | 0.734 |
| techno | 0.942 | 0.899 | 0.940 | 0.856 |
| modern | 0.725 | 0.642 | 0.772 | 0.582 |
| violins | 0.890 | 0.848 | 0.873 | 0.753 |
| noviolin | 0.521 | 0.637 | 0.697 | 0.512 |
| opera | 0.972 | 0.962 | 0.957 | 0.870 |
| india | 0.907 | 0.837 | 0.836 | 0.655 |
| cello | 0.930 | 0.882 | 0.900 | 0.669 |
| sitar | 0.940 | 0.902 | 0.896 | 0.793 |
| hard | 0.966 | 0.910 | 0.960 | 0.932 |
| banjo | 0.676 | 0.689 | 0.799 | 0.638 |
| blues | 0.909 | 0.894 | 0.894 | 0.521 |
| man | 0.886 | 0.739 | 0.883 | 0.616 |
| water | 0.896 | 0.634 | 0.956 | 0.851 |
| femalevocals | 0.891 | 0.780 | 0.777 | 0.593 |
| beat | 0.890 | 0.873 | 0.915 | 0.799 |
| vocal | 0.855 | 0.729 | 0.825 | 0.595 |
| jazz | 0.878 | 0.782 | 0.847 | 0.691 |
| male | 0.897 | 0.781 | 0.882 | 0.644 |
| maleopera | 0.982 | 0.923 | 0.992 | 0.935 |
| drums | 0.836 | 0.801 | 0.841 | 0.686 |
| electronic | 0.860 | 0.797 | 0.847 | 0.750 |
| talking | 0.875 | 0.718 | 0.933 | 0.513 |
| violin | 0.943 | 0.899 | 0.910 | 0.807 |
| bass | 0.804 | 0.779 | 0.827 | 0.677 |
| notrock | 0.510 | 0.568 | 0.603 | 0.546 |
| string | 0.795 | 0.682 | 0.768 | 0.567 |
| womansinging | 0.941 | 0.716 | 0.900 | 0.603 |
| guitar | 0.870 | 0.838 | 0.879 | 0.721 |
| medieval | 0.845 | 0.771 | 0.734 | 0.642 |
| clarinet | 0.886 | 0.753 | 0.920 | 0.666 |
| world | 0.600 | 0.565 | 0.786 | 0.636 |
| old | 0.744 | 0.644 | 0.720 | 0.679 |
| middleeastern | 0.668 | 0.604 | 0.693 | 0.536 |
| baroque | 0.925 | 0.847 | 0.877 | 0.840 |
| oriental | 0.792 | 0.798 | 0.826 | 0.628 |
| trumpet | 0.785 | 0.661 | 0.688 | 0.498 |
| irish | 0.861 | 0.792 | 0.783 | 0.551 |
| ambient | 0.916 | 0.761 | 0.873 | 0.761 |
| funk | 0.933 | 0.888 | 0.939 | 0.643 |
| metal | 0.971 | 0.954 | 0.974 | 0.962 |
| woman | 0.927 | 0.815 | 0.872 | 0.710 |
| dark | 0.897 | 0.794 | 0.874 | 0.613 |
| acoustic | 0.839 | 0.834 | 0.908 | 0.678 |
| light | 0.737 | 0.654 | 0.793 | 0.510 |
| repetitive | 0.655 | 0.497 | 0.865 | 0.496 |
| trance | 0.861 | 0.699 | 0.877 | 0.702 |
| celtic | 0.826 | 0.758 | 0.776 | 0.520 |
| electric | 0.709 | 0.527 | 0.753 | 0.572 |
| malevocals | 0.869 | 0.774 | 0.862 | 0.635 |
| heavy | 0.955 | 0.911 | 0.969 | 0.932 |
| jazzy | 0.881 | 0.801 | 0.849 | 0.709 |
| country | 0.876 | 0.771 | 0.883 | 0.577 |
| beats | 0.867 | 0.814 | 0.909 | 0.805 |
| loud | 0.893 | 0.817 | 0.927 | 0.831 |
| classical | 0.920 | 0.849 | 0.885 | 0.778 |
| voices | 0.803 | 0.691 | 0.806 | 0.651 |
| flutes | 0.943 | 0.906 | 0.939 | 0.865 |
| choral | 0.966 | 0.935 | 0.957 | 0.900 |
| harpsichord | 0.940 | 0.911 | 0.940 | 0.891 |
| eastern | 0.845 | 0.810 | 0.842 | 0.667 |
| foreign | 0.845 | 0.644 | 0.873 | 0.600 |
| fast | 0.802 | 0.758 | 0.815 | 0.642 |
| english | 0.664 | 0.519 | 0.811 | 0.536 |
| spacey | 0.907 | 0.759 | 0.886 | 0.680 |
| electro | 0.821 | 0.695 | 0.838 | 0.675 |
| calm | 0.668 | 0.601 | 0.820 | 0.554 |
| lute | 0.955 | 0.936 | 0.934 | 0.843 |
| arabic | 0.534 | 0.656 | 0.682 | 0.487 |
| voice | 0.819 | 0.620 | 0.780 | 0.562 |
| vocals | 0.812 | 0.676 | 0.791 | 0.591 |
| rap | 0.934 | 0.925 | 0.946 | 0.739 |
| singer | 0.811 | 0.642 | 0.838 | 0.494 |
| strings | 0.879 | 0.832 | 0.857 | 0.732 |
| orchestra | 0.883 | 0.797 | 0.867 | 0.725 |
| guitars | 0.659 | 0.690 | 0.817 | 0.664 |
| chant | 0.912 | 0.851 | 0.952 | 0.815 |
| heavymetal | 0.953 | 0.931 | 0.972 | 0.904 |
| girl | 0.919 | 0.701 | 0.806 | 0.685 |
| percussion | 0.778 | 0.850 | 0.850 | 0.638 |
| flute | 0.953 | 0.907 | 0.907 | 0.789 |
| drum | 0.814 | 0.735 | 0.821 | 0.611 |
| classic | 0.872 | 0.797 | 0.840 | 0.711 |
| nosinging | 0.566 | 0.526 | 0.657 | 0.495 |
| chanting | 0.891 | 0.657 | 0.878 | 0.706 |
| folk | 0.758 | 0.797 | 0.774 | 0.560 |
| malesinger | 0.835 | 0.742 | 0.883 | 0.603 |
| mellow | 0.647 | 0.632 | 0.787 | 0.515 |
| indian | 0.886 | 0.794 | 0.831 | 0.621 |
| electronica | 0.802 | 0.685 | 0.823 | 0.621 |
| women | 0.947 | 0.812 | 0.878 | 0.697 |
| notopera | 0.510 | 0.482 | 0.550 | 0.522 |
| noise | 0.817 | 0.737 | 0.759 | 0.676 |
| soft | 0.773 | 0.718 | 0.809 | 0.662 |
| femaleopera | 0.977 | 0.960 | 0.934 | 0.926 |
| malevoice | 0.870 | 0.660 | 0.869 | 0.602 |
| organ | 0.640 | 0.457 | 0.597 | 0.557 |
| female | 0.928 | 0.813 | 0.851 | 0.706 |
| classicalguitar | 0.963 | 0.949 | 0.926 | 0.909 |
| operatic | 0.948 | 0.862 | 0.913 | 0.892 |
| airy | 0.885 | 0.696 | 0.911 | 0.843 |
| malevocal | 0.895 | 0.761 | 0.892 | 0.645 |
| clapping | 0.798 | 0.575 | 0.628 | 0.499 |
| choir | 0.979 | 0.962 | 0.962 | 0.880 |
100 query subset used in Tagatune evaluation
| Tag | Mandel | Manzagol | Marsyas | Zhi |
|---|---|---|---|---|
| nostrings | 0.000 | 0.000 | 0.000 | 0.000 |
| chimes | 0.000 | 0.000 | 0.000 | 0.000 |
| sad | 0.762 | 0.760 | 0.672 | 0.703 |
| nodrums | 0.609 | 0.320 | 0.622 | 0.535 |
| femalevoice | 0.885 | 0.704 | 0.910 | 0.556 |
| horn | 0.000 | 0.000 | 0.000 | 0.000 |
| pop | 0.931 | 0.892 | 0.969 | 0.752 |
| rock | 0.966 | 0.934 | 0.968 | 0.872 |
| house | 0.000 | 0.000 | 0.000 | 0.000 |
| birds | 0.939 | 0.980 | 0.606 | 0.424 |
| harpsicord | 0.935 | 0.887 | 0.914 | 0.880 |
| strange | 0.791 | 0.449 | 0.816 | 0.480 |
| noflute | 0.000 | 0.000 | 0.000 | 0.000 |
| novocal | 0.696 | 0.606 | 0.634 | 0.481 |
| solo | 0.796 | 0.612 | 0.776 | 0.568 |
| notenglish | 0.000 | 0.313 | 0.596 | 0.475 |
| novoice | 0.784 | 0.604 | 0.703 | 0.490 |
| newage | 0.813 | 0.665 | 0.863 | 0.633 |
| synth | 0.921 | 0.774 | 0.860 | 0.645 |
| upbeat | 0.888 | 0.789 | 0.828 | 0.724 |
| slow | 0.856 | 0.679 | 0.848 | 0.637 |
| deep | 0.755 | 0.959 | 0.852 | 0.469 |
| fiddle | 0.818 | 0.768 | 0.818 | 0.470 |
| orchestral | 0.709 | 0.796 | 0.806 | 0.908 |
| notclassical | 0.000 | 0.000 | 0.000 | 0.000 |
| mansinging | 0.980 | 0.816 | 0.969 | 0.745 |
| wind | 0.939 | 0.747 | 0.980 | 0.970 |
| piano | 0.819 | 0.568 | 0.683 | 0.531 |
| spanish | 0.000 | 0.000 | 0.000 | 0.000 |
| femalesinger | 0.794 | 0.581 | 0.839 | 0.495 |
| singing | 0.939 | 0.688 | 0.846 | 0.641 |
| quiet | 0.844 | 0.735 | 0.924 | 0.659 |
| oboe | 0.000 | 0.000 | 0.000 | 0.000 |
| tribal | 0.980 | 1.000 | 0.980 | 0.500 |
| noguitar | 0.699 | 0.480 | 0.189 | 0.459 |
| femalevocal | 0.836 | 0.753 | 0.925 | 0.648 |
| fastbeat | 0.737 | 0.485 | 0.838 | 0.470 |
| hiphop | 0.000 | 0.000 | 0.000 | 0.000 |
| instrumental | 0.846 | 0.622 | 0.643 | 0.578 |
| chorus | 0.900 | 0.852 | 0.969 | 0.820 |
| silence | 0.949 | 0.960 | 0.929 | 0.970 |
| duet | 0.000 | 0.000 | 0.000 | 0.000 |
| sax | 0.122 | 0.592 | 0.122 | 0.480 |
| nobeat | 0.778 | 0.141 | 0.828 | 0.449 |
| nopiano | 0.773 | 0.368 | 0.560 | 0.438 |
| novocals | 0.632 | 0.589 | 0.707 | 0.498 |
| pianosolo | 0.000 | 0.000 | 0.000 | 0.000 |
| low | 0.737 | 0.667 | 0.737 | 0.442 |
| weird | 0.746 | 0.333 | 0.773 | 0.485 |
| dance | 0.974 | 0.906 | 0.979 | 0.852 |
| harp | 0.663 | 0.746 | 0.928 | 0.653 |
| horns | 0.588 | 0.529 | 0.282 | 0.495 |
| funky | 1.000 | 0.980 | 0.939 | 0.495 |
| hardrock | 1.000 | 0.943 | 1.000 | 0.992 |
| bells | 0.536 | 0.857 | 0.393 | 0.500 |
| punk | 0.987 | 0.997 | 0.992 | 0.982 |
| electricguitar | 0.000 | 0.000 | 0.000 | 0.000 |
| techno | 0.922 | 0.852 | 0.891 | 0.713 |
| modern | 0.796 | 0.931 | 0.813 | 0.684 |
| violins | 0.890 | 0.864 | 0.890 | 0.676 |
| noviolin | 0.000 | 0.000 | 0.000 | 0.000 |
| opera | 0.846 | 0.911 | 0.943 | 0.821 |
| india | 0.000 | 0.000 | 0.000 | 0.000 |
| cello | 0.914 | 0.838 | 0.866 | 0.662 |
| sitar | 0.859 | 0.586 | 0.818 | 1.000 |
| hard | 0.000 | 0.000 | 0.000 | 0.000 |
| banjo | 0.000 | 0.000 | 0.000 | 0.000 |
| blues | 0.000 | 0.000 | 0.000 | 0.000 |
| man | 0.862 | 0.815 | 0.880 | 0.500 |
| water | 0.000 | 0.000 | 0.000 | 0.000 |
| femalevocals | 0.834 | 0.803 | 0.823 | 0.599 |
| beat | 0.877 | 0.887 | 0.947 | 0.660 |
| vocal | 0.904 | 0.722 | 0.859 | 0.578 |
| jazz | 0.907 | 0.790 | 0.883 | 0.799 |
| male | 0.909 | 0.723 | 0.926 | 0.494 |
| maleopera | 0.000 | 0.000 | 0.000 | 0.000 |
| drums | 0.894 | 0.868 | 0.866 | 0.686 |
| electronic | 0.890 | 0.794 | 0.846 | 0.689 |
| talking | 0.000 | 0.000 | 0.000 | 0.000 |
| violin | 0.958 | 0.903 | 0.932 | 0.740 |
| bass | 0.758 | 0.731 | 0.792 | 0.495 |
| notrock | 0.000 | 0.000 | 0.000 | 0.000 |
| string | 0.809 | 0.668 | 0.747 | 0.526 |
| womansinging | 0.911 | 0.897 | 0.914 | 0.500 |
| guitar | 0.864 | 0.800 | 0.807 | 0.587 |
| medieval | 0.745 | 0.752 | 0.501 | 0.442 |
| clarinet | 0.000 | 0.000 | 0.000 | 0.000 |
| world | 0.000 | 0.000 | 0.000 | 0.000 |
| old | 0.667 | 0.586 | 0.475 | 0.869 |
| middleeastern | 0.152 | 0.101 | 0.162 | 0.485 |
| baroque | 0.829 | 0.631 | 0.747 | 0.682 |
| oriental | 0.545 | 0.232 | 0.556 | 0.500 |
| trumpet | 0.643 | 0.648 | 0.372 | 0.500 |
| irish | 0.949 | 0.838 | 0.697 | 0.939 |
| ambient | 0.898 | 0.649 | 0.895 | 0.678 |
| funk | 0.995 | 0.939 | 0.974 | 0.495 |
| metal | 0.998 | 1.000 | 0.996 | 0.983 |
| woman | 0.857 | 0.841 | 0.856 | 0.588 |
| dark | 0.657 | 0.354 | 0.596 | 0.404 |
| acoustic | 0.948 | 0.983 | 0.997 | 0.500 |
| light | 0.929 | 0.677 | 0.697 | 1.000 |
| repetitive | 0.000 | 0.000 | 0.000 | 0.000 |
| trance | 0.909 | 0.867 | 0.990 | 0.845 |
| celtic | 1.000 | 0.919 | 0.909 | 0.470 |
| electric | 0.899 | 1.000 | 0.798 | 0.480 |
| malevocals | 0.814 | 0.652 | 0.881 | 0.695 |
| heavy | 0.943 | 0.932 | 0.943 | 0.855 |
| jazzy | 0.948 | 0.983 | 0.904 | 0.797 |
| country | 0.923 | 0.556 | 0.918 | 0.495 |
| beats | 0.792 | 0.698 | 0.776 | 0.464 |
| loud | 0.944 | 0.876 | 0.941 | 0.833 |
| classical | 0.945 | 0.802 | 0.898 | 0.787 |
| voices | 0.964 | 0.842 | 0.959 | 0.747 |
| flutes | 0.000 | 0.000 | 0.000 | 0.000 |
| choral | 0.862 | 0.647 | 0.846 | 0.631 |
| harpsichord | 0.926 | 0.747 | 0.929 | 0.897 |
| eastern | 0.909 | 1.000 | 0.687 | 1.000 |
| foreign | 0.449 | 0.347 | 0.796 | 0.495 |
| fast | 0.780 | 0.670 | 0.778 | 0.617 |
| english | 0.364 | 0.798 | 0.838 | 0.495 |
| spacey | 0.959 | 0.724 | 0.990 | 0.681 |
| electro | 0.844 | 0.651 | 0.927 | 0.590 |
| calm | 0.441 | 0.651 | 0.784 | 0.495 |
| lute | 0.000 | 0.000 | 0.000 | 0.000 |
| arabic | 0.000 | 0.000 | 0.000 | 0.000 |
| voice | 0.933 | 0.700 | 0.802 | 0.540 |
| vocals | 0.846 | 0.649 | 0.775 | 0.519 |
| rap | 0.000 | 0.000 | 0.000 | 0.000 |
| singer | 0.909 | 1.000 | 0.768 | 0.490 |
| strings | 0.972 | 0.902 | 0.933 | 0.814 |
| orchestra | 0.813 | 0.823 | 0.764 | 0.368 |
| guitars | 0.000 | 0.000 | 0.000 | 0.000 |
| chant | 0.815 | 0.721 | 0.974 | 0.625 |
| heavymetal | 0.995 | 0.867 | 0.990 | 0.995 |
| girl | 0.872 | 0.699 | 0.923 | 0.735 |
| percussion | 0.000 | 0.000 | 0.000 | 0.000 |
| flute | 0.807 | 0.802 | 0.837 | 0.542 |
| drum | 0.869 | 0.869 | 0.955 | 0.495 |
| classic | 0.880 | 0.776 | 0.815 | 0.635 |
| nosinging | 0.729 | 0.347 | 0.677 | 0.479 |
| chanting | 0.719 | 0.444 | 0.969 | 0.495 |
| folk | 0.673 | 0.867 | 0.536 | 0.500 |
| malesinger | 0.778 | 0.949 | 0.990 | 0.470 |
| mellow | 0.629 | 0.707 | 0.693 | 0.489 |
| indian | 0.801 | 0.419 | 0.481 | 0.667 |
| electronica | 0.852 | 0.526 | 0.913 | 0.735 |
| women | 0.928 | 0.739 | 0.845 | 0.660 |
| notopera | 0.000 | 0.000 | 0.000 | 0.000 |
| noise | 0.000 | 0.000 | 0.000 | 0.000 |
| soft | 0.661 | 0.667 | 0.761 | 0.548 |
| femaleopera | 0.000 | 0.000 | 0.000 | 0.000 |
| malevoice | 0.906 | 0.618 | 0.882 | 0.478 |
| organ | 0.707 | 0.101 | 0.525 | 0.424 |
| female | 0.910 | 0.712 | 0.827 | 0.620 |
| classicalguitar | 1.000 | 0.970 | 1.000 | 0.990 |
| operatic | 0.000 | 0.000 | 0.000 | 0.000 |
| airy | 0.995 | 0.693 | 0.982 | 0.992 |
| malevocal | 0.883 | 0.700 | 0.916 | 0.600 |
| clapping | 0.867 | 0.270 | 0.949 | 0.500 |
| choir | 0.892 | 0.688 | 0.848 | 0.710 |
Select Friedman's Test Results
Tag F-measure (Binary) Friedman Test
The following table and plot show the results of Friedman's ANOVA with Tukey-Kramer multiple comparisons computed over the F-measure for each tag in the test, averaged over all folds.
Full dataset
| TeamID | TeamID | Lowerbound | Mean | Upperbound | Significance |
|---|---|---|---|---|---|
| Zhi | Mandel | -0.196 | 0.275 | 0.746 | FALSE |
| Zhi | Marsyas | -0.102 | 0.369 | 0.840 | FALSE |
| Zhi | Manzagol | 0.657 | 1.128 | 1.599 | TRUE |
| Zhi | LabX | 2.007 | 2.478 | 2.949 | TRUE |
| Mandel | Marsyas | -0.377 | 0.094 | 0.565 | FALSE |
| Mandel | Manzagol | 0.382 | 0.853 | 1.324 | TRUE |
| Mandel | LabX | 1.732 | 2.203 | 2.674 | TRUE |
| Marsyas | Manzagol | 0.288 | 0.759 | 1.230 | TRUE |
| Marsyas | LabX | 1.639 | 2.109 | 2.580 | TRUE |
| Manzagol | LabX | 0.879 | 1.350 | 1.821 | TRUE |
100 query subset used in Tagatune evaluation
| TeamID | TeamID | Lowerbound | Mean | Upperbound | Significance |
|---|---|---|---|---|---|
| Mandel | Zhi | 0.383 | 0.853 | 1.323 | TRUE |
| Mandel | Marsyas | 0.609 | 1.079 | 1.550 | TRUE |
| Mandel | Manzagol | 1.284 | 1.754 | 2.224 | TRUE |
| Mandel | LabX | 1.895 | 2.365 | 2.835 | TRUE |
| Zhi | Marsyas | -0.244 | 0.226 | 0.696 | FALSE |
| Zhi | Manzagol | 0.431 | 0.901 | 1.371 | TRUE |
| Zhi | LabX | 1.042 | 1.512 | 1.982 | TRUE |
| Marsyas | Manzagol | 0.204 | 0.675 | 1.145 | TRUE |
| Marsyas | LabX | 0.816 | 1.286 | 1.756 | TRUE |
| Manzagol | LabX | 0.141 | 0.611 | 1.081 | TRUE |
Per Track F-measure (Binary) Friedman Test
The following table and plot show the results of Friedman's ANOVA with Tukey-Kramer multiple comparisons computed over the F-measure for each track in the test, averaged over all folds.
Full dataset
| TeamID | TeamID | Lowerbound | Mean | Upperbound | Significance |
|---|---|---|---|---|---|
| Marsyas | Manzagol | 1.052 | 1.124 | 1.197 | TRUE |
| Marsyas | Zhi | 0.829 | 0.901 | 0.973 | TRUE |
| Marsyas | Mandel | 1.293 | 1.365 | 1.438 | TRUE |
| Marsyas | LabX | 2.795 | 2.867 | 2.939 | TRUE |
| Manzagol | Zhi | -0.296 | -0.223 | -0.151 | TRUE |
| Manzagol | Mandel | 0.168 | 0.241 | 0.313 | TRUE |
| Manzagol | LabX | 1.670 | 1.743 | 1.815 | TRUE |
| Zhi | Mandel | 0.392 | 0.464 | 0.537 | TRUE |
| Zhi | LabX | 1.894 | 1.966 | 2.038 | TRUE |
| Mandel | LabX | 1.429 | 1.502 | 1.574 | TRUE |
100 query subset used in Tagatune evaluation
| TeamID | TeamID | Lowerbound | Mean | Upperbound | Significance |
|---|---|---|---|---|---|
| Marsyas | Zhi | 0.381 | 0.985 | 1.589 | TRUE |
| Marsyas | Mandel | 0.656 | 1.260 | 1.864 | TRUE |
| Marsyas | Manzagol | 1.261 | 1.865 | 2.469 | TRUE |
| Marsyas | LabX | 2.736 | 3.340 | 3.944 | TRUE |
| Zhi | Mandel | -0.329 | 0.275 | 0.879 | FALSE |
| Zhi | Manzagol | 0.276 | 0.880 | 1.484 | TRUE |
| Zhi | LabX | 1.751 | 2.355 | 2.959 | TRUE |
| Mandel | Manzagol | 0.001 | 0.605 | 1.209 | TRUE |
| Mandel | LabX | 1.476 | 2.080 | 2.684 | TRUE |
| Manzagol | LabX | 0.871 | 1.475 | 2.079 | TRUE |
Tag AUC-ROC (Affinity) Friedman Test
The following table and plot show the results of Friedman's ANOVA with Tukey-Kramer multiple comparisons computed over the Area Under the ROC curve (AUC-ROC) for each tag in the test, averaged over all folds.
Full dataset
| TeamID | TeamID | Lowerbound | Mean | Upperbound | Significance |
|---|---|---|---|---|---|
| Marsyas | Mandel | -0.283 | 0.087 | 0.458 | FALSE |
| Marsyas | Manzagol | 0.935 | 1.306 | 1.677 | TRUE |
| Marsyas | Zhi | 1.735 | 2.106 | 2.477 | TRUE |
| Mandel | Manzagol | 0.848 | 1.219 | 1.590 | TRUE |
| Mandel | Zhi | 1.648 | 2.019 | 2.390 | TRUE |
| Manzagol | Zhi | 0.429 | 0.800 | 1.171 | TRUE |
100 query subset used in Tagatune evaluation
| TeamID | TeamID | Lowerbound | Mean | Upperbound | Significance |
|---|---|---|---|---|---|
| Mandel | Marsyas | -0.206 | 0.122 | 0.450 | FALSE |
| Mandel | Manzagol | 0.522 | 0.850 | 1.178 | TRUE |
| Mandel | Zhi | 1.025 | 1.353 | 1.681 | TRUE |
| Marsyas | Manzagol | 0.400 | 0.728 | 1.056 | TRUE |
| Marsyas | Zhi | 0.903 | 1.231 | 1.559 | TRUE |
| Manzagol | Zhi | 0.175 | 0.503 | 0.831 | TRUE |
Per Track AUC-ROC (Affinity) Friedman Test
The following table and plot show the results of Friedman's ANOVA with Tukey-Kramer multiple comparisons computed over the Area Under the ROC curve (AUC-ROC) for each track/clip in the test, averaged over all folds.
Full dataset
| TeamID | TeamID | Lowerbound | Mean | Upperbound | Significance |
|---|---|---|---|---|---|
| Marsyas | Mandel | 0.523 | 0.580 | 0.638 | TRUE |
| Marsyas | Manzagol | 1.184 | 1.242 | 1.299 | TRUE |
| Marsyas | Zhi | 1.611 | 1.668 | 1.726 | TRUE |
| Mandel | Manzagol | 0.604 | 0.661 | 0.719 | TRUE |
| Mandel | Zhi | 1.030 | 1.088 | 1.145 | TRUE |
| Manzagol | Zhi | 0.369 | 0.426 | 0.484 | TRUE |
100 query subset used in Tagatune evaluation
| TeamID | TeamID | Lowerbound | Mean | Upperbound | Significance |
|---|---|---|---|---|---|
| Marsyas | Mandel | 0.071 | 0.540 | 1.009 | TRUE |
| Marsyas | Manzagol | 1.191 | 1.660 | 2.129 | TRUE |
| Marsyas | Zhi | 1.731 | 2.200 | 2.669 | TRUE |
| Mandel | Manzagol | 0.651 | 1.120 | 1.589 | TRUE |
| Mandel | Zhi | 1.191 | 1.660 | 2.129 | TRUE |
| Manzagol | Zhi | 0.071 | 0.540 | 1.009 | TRUE |
Assorted Results Files for Download
MIREX Statistical Evaluation Results
Full dataset
affinity_tag_fold_AUC_ROC.csv
affinity_clip_AUC_ROC.csv
binary_per_fold_Accuracy.csv
binary_per_fold_Fmeasure.csv
binary_per_fold_negative_example_Accuracy.csv
binary_per_fold_per_track_Accuracy.csv
binary_per_fold_per_track_Fmeasure.csv
binary_per_fold_per_track_negative_example_Accuracy.csv
binary_per_fold_per_track_positive_example_Accuracy.csv
binary_per_fold_positive_example_Accuracy.csv
affinity_clip_Precision_at_3.csv
affinity_clip_Precision_at_6.csv
affinity_clip_Precision_at_9.csv
affinity_clip_Precision_at_12.csv
affinity_clip_Precision_at_15.csv
100 query subset used in Tagatune evaluation
affinity_tag_fold_AUC_ROC.csv
affinity_clip_AUC_ROC.csv
binary_per_fold_Accuracy.csv
binary_per_fold_Fmeasure.csv
binary_per_fold_negative_example_Accuracy.csv
binary_per_fold_per_track_Accuracy.csv
binary_per_fold_per_track_Fmeasure.csv
binary_per_fold_per_track_negative_example_Accuracy.csv
binary_per_fold_per_track_positive_example_Accuracy.csv
binary_per_fold_positive_example_Accuracy.csv
affinity_clip_Precision_at_3.csv
affinity_clip_Precision_at_6.csv
affinity_clip_Precision_at_9.csv
affinity_clip_Precision_at_12.csv
affinity_clip_Precision_at_15.csv
Friedman's Tests Results
Full dataset
affinity.AUC_ROC_TAG.friedman.tukeyKramerHSD.csv
affinity.AUC_ROC_TAG.friedman.tukeyKramerHSD.png
affinity.AUC_ROC_TRACK.friedman.tukeyKramerHSD.csv
affinity.AUC_ROC_TRACK.friedman.tukeyKramerHSD.png
affinity.PrecisionAt3.friedman.tukeyKramerHSD.csv
affinity.PrecisionAt3.friedman.tukeyKramerHSD.png
affinity.PrecisionAt6.friedman.tukeyKramerHSD.csv
affinity.PrecisionAt6.friedman.tukeyKramerHSD.png
affinity.PrecisionAt9.friedman.tukeyKramerHSD.csv
affinity.PrecisionAt9.friedman.tukeyKramerHSD.png
affinity.PrecisionAt12.friedman.tukeyKramerHSD.csv
affinity.PrecisionAt12.friedman.tukeyKramerHSD.png
affinity.PrecisionAt15.friedman.tukeyKramerHSD.csv
affinity.PrecisionAt15.friedman.tukeyKramerHSD.png
binary_Accuracy.friedman.tukeyKramerHSD.csv
binary_Accuracy.friedman.tukeyKramerHSD.png
binary_FMeasure.friedman.tukeyKramerHSD.csv
binary_FMeasure.friedman.tukeyKramerHSD.png
binary_FMeasure_per_track.friedman.tukeyKramerHSD.csv
binary_FMeasure_per_track.friedman.tukeyKramerHSD.png
100 query subset used in Tagatune evaluation
affinity.AUC_ROC_TAG.friedman.tukeyKramerHSD.csv
affinity.AUC_ROC_TAG.friedman.tukeyKramerHSD.png
affinity.AUC_ROC_TRACK.friedman.tukeyKramerHSD.csv
affinity.AUC_ROC_TRACK.friedman.tukeyKramerHSD.png
affinity.PrecisionAt3.friedman.tukeyKramerHSD.csv
affinity.PrecisionAt3.friedman.tukeyKramerHSD.png
affinity.PrecisionAt6.friedman.tukeyKramerHSD.csv
affinity.PrecisionAt6.friedman.tukeyKramerHSD.png
affinity.PrecisionAt9.friedman.tukeyKramerHSD.csv
affinity.PrecisionAt9.friedman.tukeyKramerHSD.png
affinity.PrecisionAt12.friedman.tukeyKramerHSD.csv
affinity.PrecisionAt12.friedman.tukeyKramerHSD.png
affinity.PrecisionAt15.friedman.tukeyKramerHSD.csv
affinity.PrecisionAt15.friedman.tukeyKramerHSD.png
binary_Accuracy.friedman.tukeyKramerHSD.csv
binary_Accuracy.friedman.tukeyKramerHSD.png
binary_FMeasure.friedman.tukeyKramerHSD.csv
binary_FMeasure.friedman.tukeyKramerHSD.png
binary_FMeasure_per_track.friedman.tukeyKramerHSD.csv
binary_FMeasure_per_track.friedman.tukeyKramerHSD.png
Results By Algorithm
(.tgz format)
Full dataset
LabX = Anonymous
Mandel = Michael Mandel
Manzagol = Pierre-Antoine Manzagol
Marsyas = George Tzanetakis
Zhi = Zhi-Sheng Chen
100 query subset used in Tagatune evaluation
LabX = Anonymous
Mandel = Michael Mandel
Manzagol = Pierre-Antoine Manzagol
Marsyas = George Tzanetakis
Zhi = Zhi-Sheng Chen