2009:Audio Tag Classification Tagatune Results
Contents
Introduction
This task compares various algorithms' abilities to associate tags with 29-second audio clips of songs. The tags used were collected by the Tagatune game and algorithms were evaluated using the previously collected tags (using the same statistical procedures as the the other MIREX 2009 tag classification tasks) and in the Tagatune game itself (the Tagatune metric).
What is Tagatune?
Tagatune is a two-player game designed to extract information about music. In each round of the game, two players are each shown a song, either they are shown the same song or two different songs. Each player describes his given song by typing in any number of tags, which are immediately revealed to the partner. After reviewing each other's tags, the players must each decide whether they have been given the same piece of music as their partner. After both players have voted, the game reveals the true answer (whether the songs given to the pair of players are the same or different) and prepares the next round. Tagatune is live at www.gwap.com
http://www.cs.cmu.edu/~elaw/tagatune.jpg
Since Tagatune is a two-player game, when no partner is available for a player, a bot (a computer program or algorithm) is instituted to play against that player. In each round of the game, the bot generates a set of appropriate tags for a song and reveals these tags to the player. The player then decides his votes for same or different by comparing what he is listening to and the tags revealed by his bot partner. If the songs given to the bot and the player are identical, and the tags generated by the bot are accurate for the song, then the player will have a high probability of guessing correctly that the songs are the same. Otherwise, we would expect the player to make more mistakes in making this judgment. In short, the hypothesis is that better algorithms generate tags that are more fitting descriptions of songs, which in turn, allows players to have a higher chance of guessing correctly.
What is the goal of the MIREX Special Tagatune Evaluation?
The goal of the MIREX Special Tagatune Evaluation competition is to investigate a new method of evaluating music tagging algorithms, by using them as bots in Tagatune, and measuring the number of mistakes players make in guessing whether they are listening to the same or different songs (we will call this the Tagatune metric) when paired against different algorithm bots. We are particularly interested in whether there is a statistical correlation between the ranking of the algorithms induced by the Tagatune metric versus the classical metrics used in MIREX. For the motivation behind this evaluation, see this paper.
There are three main steps to this evaluation.
Step 1: Algorithm to Tags
All submitted algorithms are trained using the Tagatune training set and tested on the Tagatune test set. Artist filtering was used in the production of the test and training split, I.e. the training and test sets contained different artists. The trained algorithm must generate a set of tags for each of the songs in the test set, and rank the tags in a particular order (e.g. by confidence, saliency, relevance etc). This part of the evaluation is very similar, if not identical, to the MIREX 2009 Audio Tag Classification tasks where two outputs are produced by each algorithm:
- a set of binary classifications indicating which tags are relevant to each example,
- a set of 'affinity' scores which indicate the degree to which each tag applies to each track.
These different outputs allow the algorithms to be evaluated both on tag 'classification' and tag 'ranking' (where the tags may be ranked for each track and tracks ranked for each tag).
Step 2: Tagatune Experiments
The tags returned as 'relevant' by each algorithm were subsequently displayed to players of Tagatune in an internet-wide experiment. The number of mistakes players make in guessing whether the songs were the same or different was recorded for each algorithm.
Step 3: Ranking
The submitted algorithm were then evaluated by two methods:
(1) ranking using the MIREX metrics
(2) ranking using the Tagatune metric
The Tagatune Dataset
The Tagatune training and test set consist of music clips that are 29 seconds long, and are associated with 6622 tracks, 517 albums and 270 artists. The genres include classical, new age, electronica, rock, pop, world, jazz, blues, metal, punk etc. The tags used in the experiments are each associated with more than fifty songs, where each song is associated with a tag by more than two players independently. The following table shows the minimum, maximum and average number of songs associated with any tags in the training set, test set and the complete set used in this evaluation.
Training Set | Test Set | Complete Set | |
MIN | 18 | 15 | 50 |
MAX | 2103 | 3767 | 5870 |
AVG | 212 | 288 | 502 |
Number of samples in training set: 9598
Number of samples in test set: 13194
The following is a list of 160 tags found in the Tagatune dataset.
no voice | singer | duet | hard rock |
world | harpsichord | sitar | chorus |
female opera | male vocal | vocals | clarinet |
heavy | silence | beats | funky |
no strings | chimes | foreign | no piano |
horns | classical | female | spacey |
jazz | guitar | quiet | no beat |
banjo | electric | solo | violins |
folk | female voice | wind | ambient |
new age | synth | funk | no singing |
middle eastern | trumpet | percussion | drum |
airy | voice | repetitive | birds |
strings | bass | harpsicord | medieval |
male voice | girl | acoustic | loud |
classic | string | drums | electronic |
not classical | chanting | no violin | not rock |
no guitar | organ | no vocal | talking |
choral | weird | opera | fast |
electric guitar | male singer | man singing | classical guitar |
country | violin | electro | tribal |
dark | male opera | no vocals | irish |
electronica | horn | operatic | arabic |
low | instrumental | trance | chant |
strange | heavy metal | modern | bells |
man | deep | fast beat | hard |
harp | no flute | pop | lute |
female vocal | oboe | mellow | orchestral |
light | piano | celtic | male vocals |
orchestra | eastern | old | flutes |
punk | spanish | sad | sax |
slow | male | blues | vocal |
indian | india | woman | woman singing |
rock | dance | piano solo | guitars |
no drums | jazzy | singing | cello |
calm | female vocals | voices | techno |
clapping | house | flute | not opera |
not english | oriental | beat | upbeat |
soft | noise | choir | female singer |
rap | metal | hip hop | water |
baroque | women | fiddle | english |
NOTE: An interesting effect of Tagatune is that we have collected many negative tags, which indicates the absence of an instrument (e.g. no piano, no guitar) or the genre that the song does not belong to (e.g. not classical, not rock). Participants of this evaluation might want to tailor their algorithms to take advantage of these negative tags that are not available on the MIREX 2008/2009 datasets.
MIREX Statistical Evaluation
Participating algorithms were evaluated over a single artist-filtered test/train split using both the full test set and only the 100 query subset used in Tagatune evaluation.
Binary (Classification) Evaluation
Algorithms are evaluated on their performance at tag classification using F-measure. Results are also reported for simple accuracy, however, as this statistic is dominated by the negative example accuracy it is not a reliable indicator of performance (as a system that returns no tags for any example will achieve a high score on this statistic). However, the accuracies are also reported for positive and negative examples separately as these can help elucidate the behaviour of an algorithm (for example demonstrating if the system is under of over predicting).
Affinity (Ranking) Evaluation
Algorithms are evaluated on their performance at tag ranking using the Area Under the Receiver Operating Characteristic Curve (AUC-ROC). The affinity scores for each tag to be applied to a track are sorted prior to the computation of the AUC-ROC statistic, which gives higher scores to ranked tag sets where the correct tags appear towards the top of the set.
General Legend
Team ID
Mandel = Michael Mandel
Manzagol = Pierre-Antoine Manzagol
Marsyas = George Tzanetakis
Zhi = Zhi-Sheng Chen
LabX = Anonymous
Results
The following sections provide detail the evaluation statistics computed. The results of the task are also detailed in the paper Evaluation of Algorithms Using Games: The Case of Music Tagging.
Overall Summary Results (Tagatune)
Measure | Human | LabX | Mandel | Manzagol | Marsyas | Zhi |
---|---|---|---|---|---|---|
Tagatune Metric | 93.00% | 26.80% | 70.10% | 67.50% | 68.60% | 60.90% |
Friedman's Test Results
The following table and plot show the results of Friedman's ANOVA with Tukey-Kramer multiple comparisons computed over the Tagatune metric for each track in the test. The tags generated by the algorithms are pre-processed to remove redundant or contradictory tags, which is important to maintain a minimum quality for the algorithm bots. This pre-processing is not done on the data for which other metrics are computed.
TeamID | TeamID | Lowerbound | Mean | Upperbound | Significance |
---|---|---|---|---|---|
"Human" | "Mandel" | 0.563 | 1.265 | 1.967 | TRUE |
"Human" | "Manzagol" | 0.513 | 1.215 | 1.917 | TRUE |
"Human" | "Marsyas" | 0.773 | 1.475 | 2.177 | TRUE |
"Human" | "Zhi" | 1.258 | 1.960 | 2.662 | TRUE |
"Human" | "LabX" | 2.233 | 2.935 | 3.637 | TRUE |
"Mandel" | "Manzagol" | -0.752 | -0.050 | 0.652 | FALSE |
"Mandel" | "Marsyas" | -0.492 | 0.210 | 0.912 | FALSE |
"Mandel" | "Zhi" | -0.007 | 0.695 | 1.397 | FALSE |
"Mandel" | "LabX" | 0.968 | 1.670 | 2.372 | TRUE |
"Manzagol" | "Marsyas" | -0.442 | 0.260 | 0.962 | FALSE |
"Manzagol" | "Zhi" | 0.043 | 0.745 | 1.447 | TRUE |
"Manzagol" | "LabX" | 1.018 | 1.720 | 2.422 | TRUE |
"Marsyas" | "Zhi" | -0.217 | 0.485 | 1.187 | FALSE |
"Marsyas" | "LabX" | 0.758 | 1.460 | 2.162 | TRUE |
"Zhi" | "LabX" | 0.273 | 0.975 | 1.677 | TRUE |
https://music-ir.org/mirex/results/2009/tagatune/tagatune_correctness.friedman.tukeyKramerHSD.png
Tagatune Correctness
Track | Human | LabX | Mandel | Manzagol | Marsyas | Zhi |
---|---|---|---|---|---|---|
4303 | 1 | 0 | 0.800 | 1 | 1 | 0 |
33934 | 1 | 0.200 | 1 | 0.800 | 0.800 | 1 |
48608 | 0.800 | 0.400 | 0.800 | 0.800 | 0.800 | 1 |
41810 | 1 | 0 | 0.600 | 0.200 | 1 | 1 |
42165 | 1 | 0.600 | 0.600 | 1 | 1 | 0.800 |
36668 | 0.800 | 0.200 | 0.800 | 0.800 | 0.600 | 0.400 |
54698 | 1 | 0.400 | 0.800 | 0.600 | 0.400 | 0.600 |
23910 | 1 | 0.600 | 0.400 | 0.600 | 0.600 | 0 |
55057 | 1 | 0.200 | 1 | 1 | 1 | 0.400 |
10943 | 1 | 0.800 | 1 | 1 | 0 | 0.800 |
32635 | 1 | 0.200 | 0.400 | 1 | 0.600 | 0.600 |
8802 | 1 | 0 | 0.800 | 1 | 0.600 | 1 |
48455 | 0.800 | 0.200 | 1 | 0.600 | 0.600 | 0.600 |
31267 | 0.600 | 0.600 | 1 | 0.800 | 0.600 | 0.400 |
25699 | 1 | 0.400 | 1 | 1 | 1 | 0 |
42361 | 1 | 0 | 1 | 0.800 | 0.400 | 0 |
21267 | 1 | 1 | 0.600 | 0 | 0 | 0.400 |
9956 | 1 | 0.200 | 0.400 | 0 | 0.400 | 0.400 |
44920 | 1 | 0 | 0.600 | 0.800 | 0.800 | 1 |
7313 | 1 | 0 | 0.400 | 0.400 | 0.400 | 0.400 |
28222 | 0.800 | 0 | 0.600 | 1 | 0.800 | 0.800 |
28224 | 1 | 0.200 | 0.600 | 0.800 | 0.600 | 0.800 |
19209 | 0.800 | 0.400 | 0.600 | 1 | 1 | 0.400 |
23773 | 1 | 0 | 0.600 | 1 | 1 | 1 |
43598 | 0.800 | 0 | 0.400 | 0.400 | 0 | 0.800 |
88 | 1 | 0 | 1 | 1 | 0.600 | 0.800 |
9494 | 1 | 0.200 | 0.200 | 0.400 | 0 | 0.600 |
16864 | 0.800 | 0.800 | 0.800 | 0.800 | 1 | 0.600 |
31905 | 1 | 0.200 | 0.800 | 1 | 0 | 0.200 |
15023 | 1 | 0 | 1 | 1 | 0.800 | 0.600 |
27304 | 1 | 0.200 | 0.400 | 0 | 0.800 | 0.600 |
16385 | 0.800 | 0.200 | 0.600 | 0.600 | 0.800 | 0.200 |
40029 | 0.800 | 1 | 1 | 1 | 0.800 | 0.200 |
43295 | 0.800 | 0 | 1 | 0 | 1 | 0.800 |
12795 | 0.600 | 1 | 0.200 | 0.200 | 1 | 0 |
44560 | 0.800 | 0 | 0.200 | 1 | 0 | 0.400 |
15325 | 1 | 0.200 | 1 | 1 | 0.600 | 0.400 |
33941 | 1 | 0.200 | 0.600 | 1 | 1 | 0.200 |
15134 | 0.800 | 0.400 | 0.600 | 0.600 | 1 | 0.400 |
4815 | 0.800 | 0.600 | 0.800 | 0.200 | 0.200 | 0.400 |
20022 | 1 | 0.400 | 0.400 | 1 | 1 | 0.600 |
26382 | 1 | 0.200 | 0.800 | 0.200 | 0.200 | 0.600 |
35687 | 1 | 0.200 | 1 | 0 | 0 | 0.200 |
45842 | 1 | 0 | 1 | 0.800 | 1 | 0.600 |
2456 | 0.800 | 0.800 | 0.600 | 0 | 0.200 | 0.600 |
15128 | 1 | 0 | 0.800 | 0.200 | 1 | 0.400 |
25228 | 0.800 | 0 | 0.600 | 0.800 | 0.600 | 0 |
46943 | 1 | 0 | 1 | 0.800 | 0 | 0.200 |
24215 | 0.800 | 0.400 | 0.400 | 0 | 0.200 | 0 |
20132 | 0.600 | 0.600 | 0.400 | 0.400 | 0.800 | 0.200 |
19370 | 1 | 0 | 0.800 | 0.800 | 0.800 | 0.200 |
2053 | 1 | 1 | 1 | 1 | 1 | 1 |
3217 | 1 | 0 | 0.800 | 0.400 | 0.200 | 1 |
49877 | 1 | 0 | 0.200 | 0.800 | 0.200 | 1 |
20030 | 1 | 0 | 0.600 | 1 | 1 | 0.600 |
55361 | 0.800 | 0.600 | 0.600 | 1 | 0.600 | 0.800 |
24920 | 1 | 0 | 0.800 | 1 | 0.800 | 0.600 |
25635 | 0.600 | 0 | 0.800 | 1 | 1 | 0.800 |
43638 | 0.800 | 0.800 | 0.800 | 0.600 | 0 | 0.200 |
13047 | 1 | 0.600 | 1 | 0.600 | 1 | 0.600 |
46941 | 0.600 | 0 | 0.400 | 0.200 | 0.400 | 0.400 |
34281 | 1 | 0 | 1 | 1 | 1 | 0.600 |
15093 | 0.600 | 0.400 | 0.800 | 0.400 | 0.200 | 0.400 |
36940 | 1 | 0 | 0.800 | 0.400 | 0.200 | 1 |
18122 | 0.600 | 0.800 | 0.200 | 0.200 | 0.400 | 0.200 |
3074 | 1 | 0 | 0.800 | 1 | 1 | 1 |
16429 | 1 | 0 | 0.600 | 0 | 1 | 1 |
44091 | 1 | 0.200 | 0.600 | 1 | 1 | 0.200 |
23230 | 1 | 0.200 | 0 | 0 | 0.400 | 0 |
29086 | 1 | 0.600 | 1 | 1 | 1 | 0.800 |
7561 | 1 | 0.800 | 1 | 0 | 0.600 | 1 |
42554 | 1 | 0.400 | 0.800 | 0.800 | 1 | 0.200 |
40638 | 0.800 | 0 | 0.400 | 1 | 0.600 | 0.200 |
19220 | 1 | 0.600 | 0.400 | 1 | 0.800 | 0.800 |
3227 | 1 | 0 | 0.800 | 1 | 0.600 | 0.600 |
14874 | 1 | 0.200 | 1 | 0.800 | 1 | 1 |
31684 | 1 | 0.800 | 1 | 0.400 | 0 | 0.800 |
48236 | 1 | 0.600 | 0.200 | 0.600 | 0.800 | 0.200 |
14241 | 1 | 0.200 | 0.200 | 1 | 1 | 0.800 |
48424 | 0.800 | 0 | 0.400 | 0.800 | 0.800 | 0.200 |
37579 | 0.800 | 0.200 | 1 | 1 | 1 | 1 |
27476 | 0.800 | 0.200 | 0.400 | 1 | 0.200 | 0.600 |
31220 | 1 | 0 | 0.400 | 0.800 | 0 | 0.800 |
36649 | 1 | 0.200 | 0.800 | 1 | 0 | 0 |
36168 | 1 | 0 | 0.800 | 0.600 | 1 | 1 |
36646 | 1 | 0.200 | 0.200 | 0.400 | 0.400 | 0 |
21872 | 1 | 0 | 1 | 0 | 0.600 | 0.400 |
13232 | 1 | 0.200 | 1 | 1 | 0.800 | 0.800 |
30803 | 0.800 | 0 | 1 | 0.400 | 0.600 | 1 |
45897 | 1 | 0.200 | 1 | 0.200 | 1 | 1 |
18287 | 0.800 | 1 | 0.600 | 0.800 | 0.800 | 0.800 |
26461 | 1 | 0.400 | 1 | 1 | 1 | 1 |
10949 | 1 | 0 | 0.800 | 1 | 0 | 0.400 |
51093 | 1 | 0 | 1 | 1 | 0.800 | 1 |
32514 | 1 | 0.200 | 0.800 | 0.600 | 0.800 | 0.600 |
53102 | 0.600 | 0.800 | 1 | 1 | 0.800 | 0 |
46769 | 1 | 0 | 1 | 1 | 1 | 0.200 |
4853 | 1 | 0.800 | 0.200 | 0.600 | 1 | 0.400 |
10944 | 1 | 1 | 0.800 | 1 | 0.600 | 0.800 |
36811 | 0.800 | 0.200 | 0.600 | 0.200 | 0.200 | 0.200 |
Overall Summary Results (MIREX Statistical evaluation - Binary)
Full dataset
Measure | LabX | Mandel | Manzagol | Marsyas | Zhi |
---|---|---|---|---|---|
Average Tag F-measure | 0.001 | 0.132 | 0.098 | 0.125 | 0.138 |
Average Tag Accuracy | 0.972 | 0.789 | 0.967 | 0.948 | 0.914 |
Average Positive Tag Accuracy | 0.004 | 0.698 | 0.120 | 0.223 | 0.413 |
Average Negative Tag Accuracy | 0.994 | 0.790 | 0.983 | 0.954 | 0.922 |
100 query subset used in Tagatune evaluation
Measure | LabX | Mandel | Manzagol | Marsyas | Zhi |
---|---|---|---|---|---|
Average Tag F-measure | 0.002 | 0.304 | 0.110 | 0.212 | 0.250 |
Average Tag Accuracy | 0.921 | 0.799 | 0.925 | 0.924 | 0.886 |
Average Positive Tag Accuracy | 0.005 | 0.688 | 0.095 | 0.224 | 0.361 |
Average Negative Tag Accuracy | 0.993 | 0.806 | 0.987 | 0.956 | 0.923 |
Binary Relevance F-Measure
Full dataset
Tag | Positive Examples | Negative Examples | LabX | Mandel | Manzagol | Marsyas | Zhi |
---|---|---|---|---|---|---|---|
nostrings | 13.000 | 6486.000 | 0.000 | 0.005 | 0.000 | 0.000 | 0.000 |
chimes | 22.000 | 6477.000 | 0.022 | 0.016 | 0.000 | 0.035 | 0.046 |
sad | 18.000 | 6481.000 | 0.006 | 0.014 | 0.062 | 0.000 | 0.026 |
nodrums | 48.000 | 6451.000 | 0.000 | 0.019 | 0.000 | 0.000 | 0.017 |
femalevoice | 105.000 | 6394.000 | 0.000 | 0.142 | 0.081 | 0.147 | 0.177 |
horn | 7 | 6492.000 | 0.000 | 0.003 | 0.000 | 0.000 | 0.014 |
pop | 196.000 | 6303.000 | 0.000 | 0.166 | 0.184 | 0.254 | 0.158 |
rock | 601.000 | 5898.000 | 0.000 | 0.562 | 0.502 | 0.551 | 0.523 |
house | 22.000 | 6477.000 | 0.000 | 0.025 | 0.028 | 0.000 | 0.029 |
birds | 7 | 6492.000 | 0.000 | 0.012 | 0.000 | 0.034 | 0.020 |
harpsicord | 59.000 | 6440.000 | 0.000 | 0.165 | 0.127 | 0.209 | 0.094 |
strange | 22.000 | 6477.000 | 0.000 | 0.015 | 0.000 | 0.043 | 0.022 |
noflute | 35.000 | 6464.000 | 0.000 | 0.008 | 0.000 | 0.000 | 0.015 |
novocal | 263.000 | 6236.000 | 0.000 | 0.099 | 0.006 | 0.104 | 0.082 |
solo | 217.000 | 6282.000 | 0.000 | 0.202 | 0.085 | 0.183 | 0.188 |
notenglish | 11.000 | 6488.000 | 0.000 | 0.019 | 0.000 | 0.031 | 0.052 |
novoice | 146.000 | 6353.000 | 0.000 | 0.058 | 0.011 | 0.058 | 0.048 |
newage | 157.000 | 6342.000 | 0.000 | 0.139 | 0.000 | 0.174 | 0.116 |
synth | 294.000 | 6205.000 | 0.000 | 0.190 | 0.083 | 0.233 | 0.192 |
upbeat | 52.000 | 6447.000 | 0.000 | 0.040 | 0.029 | 0.070 | 0.057 |
slow | 1043.000 | 5456.000 | 0.000 | 0.437 | 0.256 | 0.452 | 0.392 |
deep | 12.000 | 6487.000 | 0.000 | 0.013 | 0.065 | 0.000 | 0.019 |
fiddle | 14.000 | 6485.000 | 0.000 | 0.018 | 0.000 | 0.027 | 0.018 |
orchestral | 12.000 | 6487.000 | 0.000 | 0.008 | 0.000 | 0.000 | 0.029 |
notclassical | 14.000 | 6485.000 | 0.000 | 0.006 | 0.000 | 0.000 | 0.017 |
mansinging | 46.000 | 6453.000 | 0.000 | 0.042 | 0.011 | 0.063 | 0.070 |
wind | 22.000 | 6477.000 | 0.048 | 0.025 | 0.022 | 0.000 | 0.032 |
piano | 630.000 | 5869.000 | 0.000 | 0.550 | 0.528 | 0.392 | 0.534 |
spanish | 65.000 | 6434.000 | 0.000 | 0.050 | 0.011 | 0.060 | 0.068 |
femalesinger | 30.000 | 6469.000 | 0.000 | 0.047 | 0.075 | 0.120 | 0.085 |
singing | 242.000 | 6257.000 | 0.000 | 0.226 | 0.116 | 0.262 | 0.221 |
quiet | 263.000 | 6236.000 | 0.000 | 0.219 | 0.054 | 0.342 | 0.212 |
oboe | 12.000 | 6487.000 | 0.000 | 0.009 | 0.026 | 0.000 | 0.004 |
tribal | 40.000 | 6459.000 | 0.000 | 0.022 | 0.036 | 0.090 | 0.082 |
noguitar | 46.000 | 6453.000 | 0.000 | 0.018 | 0.000 | 0.011 | 0.049 |
femalevocal | 126.000 | 6373.000 | 0.000 | 0.189 | 0.076 | 0.208 | 0.202 |
fastbeat | 33.000 | 6466.000 | 0.000 | 0.029 | 0.000 | 0.000 | 0.057 |
hiphop | 32.000 | 6467.000 | 0.000 | 0.058 | 0.222 | 0.000 | 0.121 |
instrumental | 102.000 | 6397.000 | 0.000 | 0.045 | 0.026 | 0.053 | 0.048 |
chorus | 50.000 | 6449.000 | 0.000 | 0.161 | 0.255 | 0.000 | 0.234 |
silence | 12.000 | 6487.000 | 0.000 | 0.030 | 0.075 | 0.000 | 0.029 |
duet | 18.000 | 6481.000 | 0.000 | 0.014 | 0.000 | 0.000 | 0.015 |
sax | 20.000 | 6479.000 | 0.000 | 0.012 | 0.000 | 0.026 | 0.000 |
nobeat | 14.000 | 6485.000 | 0.000 | 0.008 | 0.000 | 0.000 | 0.031 |
nopiano | 90.000 | 6409.000 | 0.017 | 0.033 | 0.000 | 0.007 | 0.023 |
novocals | 326.000 | 6173.000 | 0.000 | 0.119 | 0.006 | 0.117 | 0.100 |
pianosolo | 13.000 | 6486.000 | 0.000 | 0.019 | 0.117 | 0.000 | 0.052 |
low | 35.000 | 6464.000 | 0.000 | 0.039 | 0.097 | 0.031 | 0.030 |
weird | 120.000 | 6379.000 | 0.000 | 0.075 | 0.036 | 0.145 | 0.103 |
dance | 184.000 | 6315.000 | 0.000 | 0.216 | 0.214 | 0.179 | 0.265 |
harp | 137.000 | 6362.000 | 0.000 | 0.137 | 0.085 | 0.148 | 0.128 |
horns | 12.000 | 6487.000 | 0.000 | 0.009 | 0.035 | 0.000 | 0.012 |
funky | 66.000 | 6433.000 | 0.000 | 0.073 | 0.082 | 0.000 | 0.105 |
hardrock | 80.000 | 6419.000 | 0.000 | 0.182 | 0.115 | 0.000 | 0.171 |
bells | 36.000 | 6463.000 | 0.000 | 0.021 | 0.028 | 0.046 | 0.042 |
punk | 42.000 | 6457.000 | 0.000 | 0.122 | 0.159 | 0.000 | 0.120 |
electricguitar | 51.000 | 6448.000 | 0.000 | 0.049 | 0.071 | 0.113 | 0.065 |
techno | 827.000 | 5672.000 | 0.000 | 0.584 | 0.441 | 0.609 | 0.621 |
modern | 73.000 | 6426.000 | 0.000 | 0.037 | 0.046 | 0.051 | 0.053 |
violins | 258.000 | 6241.000 | 0.000 | 0.269 | 0.155 | 0.220 | 0.251 |
noviolin | 18.000 | 6481.000 | 0.000 | 0.007 | 0.077 | 0.028 | 0.009 |
opera | 325.000 | 6174.000 | 0.000 | 0.667 | 0.592 | 0.372 | 0.630 |
india | 22.000 | 6477.000 | 0.000 | 0.025 | 0.074 | 0.033 | 0.167 |
cello | 145.000 | 6354.000 | 0.000 | 0.376 | 0.268 | 0.208 | 0.266 |
sitar | 250.000 | 6249.000 | 0.000 | 0.377 | 0.454 | 0.400 | 0.321 |
hard | 25.000 | 6474.000 | 0.000 | 0.060 | 0.051 | 0.000 | 0.063 |
banjo | 15.000 | 6484.000 | 0.000 | 0.015 | 0.051 | 0.013 | 0.026 |
blues | 42.000 | 6457.000 | 0.000 | 0.095 | 0.103 | 0.121 | 0.053 |
man | 128.000 | 6371.000 | 0.000 | 0.132 | 0.025 | 0.231 | 0.194 |
water | 12.000 | 6487.000 | 0.000 | 0.027 | 0.000 | 0.000 | 0.026 |
femalevocals | 90.000 | 6409.000 | 0.000 | 0.128 | 0.068 | 0.145 | 0.140 |
beat | 534.000 | 5965.000 | 0.000 | 0.370 | 0.269 | 0.527 | 0.459 |
vocal | 346.000 | 6153.000 | 0.000 | 0.277 | 0.102 | 0.295 | 0.228 |
jazz | 88.000 | 6411.000 | 0.000 | 0.099 | 0.076 | 0.153 | 0.118 |
male | 316.000 | 6183.000 | 0.000 | 0.310 | 0.193 | 0.327 | 0.293 |
maleopera | 18.000 | 6481.000 | 0.000 | 0.125 | 0.147 | 0.000 | 0.128 |
drums | 663.000 | 5836.000 | 0.000 | 0.374 | 0.235 | 0.417 | 0.367 |
electronic | 578.000 | 5921.000 | 0.000 | 0.364 | 0.156 | 0.411 | 0.383 |
talking | 27.000 | 6472.000 | 0.000 | 0.034 | 0.061 | 0.000 | 0.020 |
violin | 908.000 | 5591.000 | 0.000 | 0.666 | 0.620 | 0.560 | 0.587 |
bass | 73.000 | 6426.000 | 0.000 | 0.053 | 0.037 | 0.123 | 0.091 |
notrock | 19.000 | 6480.000 | 0.000 | 0.004 | 0.000 | 0.034 | 0.035 |
string | 91.000 | 6408.000 | 0.000 | 0.068 | 0.032 | 0.076 | 0.047 |
womansinging | 32.000 | 6467.000 | 0.000 | 0.059 | 0.031 | 0.119 | 0.108 |
guitar | 1166.000 | 5333.000 | 0.000 | 0.584 | 0.464 | 0.507 | 0.544 |
medieval | 39.000 | 6460.000 | 0.000 | 0.044 | 0.072 | 0.012 | 0.038 |
clarinet | 16.000 | 6483.000 | 0.000 | 0.028 | 0.000 | 0.000 | 0.036 |
world | 14.000 | 6485.000 | 0.000 | 0.007 | 0.080 | 0.000 | 0.069 |
old | 14.000 | 6485.000 | 0.000 | 0.012 | 0.000 | 0.040 | 0.012 |
middleeastern | 17.000 | 6482.000 | 0.000 | 0.009 | 0.027 | 0.044 | 0.013 |
baroque | 81.000 | 6418.000 | 0.019 | 0.120 | 0.015 | 0.155 | 0.093 |
oriental | 50.000 | 6449.000 | 0.000 | 0.038 | 0.055 | 0.072 | 0.072 |
trumpet | 17.000 | 6482.000 | 0.000 | 0.016 | 0.080 | 0.000 | 0.000 |
irish | 49.000 | 6450.000 | 0.000 | 0.070 | 0.018 | 0.092 | 0.030 |
ambient | 419.000 | 6080.000 | 0.000 | 0.432 | 0.028 | 0.397 | 0.308 |
funk | 32.000 | 6467.000 | 0.000 | 0.062 | 0.086 | 0.000 | 0.057 |
metal | 159.000 | 6340.000 | 0.006 | 0.333 | 0.187 | 0.000 | 0.295 |
woman | 186.000 | 6313.000 | 0.000 | 0.292 | 0.106 | 0.274 | 0.335 |
dark | 36.000 | 6463.000 | 0.000 | 0.045 | 0.035 | 0.000 | 0.027 |
acoustic | 66.000 | 6433.000 | 0.012 | 0.081 | 0.097 | 0.106 | 0.124 |
light | 16.000 | 6483.000 | 0.000 | 0.009 | 0.000 | 0.054 | 0.007 |
repetitive | 24.000 | 6475.000 | 0.000 | 0.012 | 0.000 | 0.000 | 0.000 |
trance | 51.000 | 6448.000 | 0.000 | 0.049 | 0.021 | 0.057 | 0.063 |
celtic | 27.000 | 6472.000 | 0.000 | 0.024 | 0.000 | 0.067 | 0.017 |
electric | 44.000 | 6455.000 | 0.000 | 0.022 | 0.000 | 0.013 | 0.039 |
malevocals | 123.000 | 6376.000 | 0.066 | 0.122 | 0.122 | 0.178 | 0.101 |
heavy | 59.000 | 6440.000 | 0.000 | 0.110 | 0.161 | 0.000 | 0.120 |
jazzy | 68.000 | 6431.000 | 0.000 | 0.081 | 0.099 | 0.112 | 0.112 |
country | 122.000 | 6377.000 | 0.000 | 0.179 | 0.141 | 0.190 | 0.128 |
beats | 157.000 | 6342.000 | 0.009 | 0.131 | 0.123 | 0.240 | 0.223 |
loud | 313.000 | 6186.000 | 0.000 | 0.307 | 0.148 | 0.448 | 0.318 |
classical | 1544.000 | 4955.000 | 0.000 | 0.727 | 0.244 | 0.523 | 0.618 |
voices | 39.000 | 6460.000 | 0.000 | 0.045 | 0.000 | 0.038 | 0.103 |
flutes | 54.000 | 6445.000 | 0.000 | 0.124 | 0.298 | 0.000 | 0.227 |
choral | 104.000 | 6395.000 | 0.000 | 0.360 | 0.282 | 0.256 | 0.475 |
harpsichord | 263.000 | 6236.000 | 0.000 | 0.398 | 0.375 | 0.384 | 0.290 |
eastern | 80.000 | 6419.000 | 0.000 | 0.068 | 0.100 | 0.185 | 0.110 |
foreign | 51.000 | 6448.000 | 0.000 | 0.061 | 0.023 | 0.124 | 0.142 |
fast | 616.000 | 5883.000 | 0.000 | 0.324 | 0.154 | 0.384 | 0.291 |
english | 11.000 | 6488.000 | 0.000 | 0.005 | 0.000 | 0.000 | 0.014 |
spacey | 27.000 | 6472.000 | 0.000 | 0.047 | 0.000 | 0.052 | 0.033 |
electro | 87.000 | 6412.000 | 0.000 | 0.064 | 0.015 | 0.079 | 0.091 |
calm | 33.000 | 6466.000 | 0.000 | 0.016 | 0.000 | 0.038 | 0.023 |
lute | 15.000 | 6484.000 | 0.000 | 0.049 | 0.088 | 0.000 | 0.051 |
arabic | 10.000 | 6489.000 | 0.000 | 0.003 | 0.019 | 0.000 | 0.000 |
voice | 111.000 | 6388.000 | 0.000 | 0.086 | 0.057 | 0.115 | 0.086 |
vocals | 256.000 | 6243.000 | 0.000 | 0.176 | 0.084 | 0.203 | 0.187 |
rap | 41.000 | 6458.000 | 0.000 | 0.111 | 0.219 | 0.000 | 0.296 |
singer | 25.000 | 6474.000 | 0.000 | 0.023 | 0.029 | 0.021 | 0.000 |
strings | 997.000 | 5502.000 | 0.000 | 0.551 | 0.141 | 0.509 | 0.461 |
orchestra | 98.000 | 6401.000 | 0.000 | 0.117 | 0.108 | 0.118 | 0.110 |
guitars | 25.000 | 6474.000 | 0.000 | 0.011 | 0.000 | 0.000 | 0.036 |
chant | 51.000 | 6448.000 | 0.000 | 0.190 | 0.182 | 0.350 | 0.262 |
heavymetal | 43.000 | 6456.000 | 0.000 | 0.106 | 0.109 | 0.000 | 0.123 |
girl | 10.000 | 6489.000 | 0.000 | 0.011 | 0.000 | 0.000 | 0.041 |
percussion | 26.000 | 6473.000 | 0.004 | 0.020 | 0.000 | 0.032 | 0.059 |
flute | 455.000 | 6044.000 | 0.000 | 0.609 | 0.589 | 0.479 | 0.475 |
drum | 89.000 | 6410.000 | 0.000 | 0.066 | 0.060 | 0.110 | 0.101 |
classic | 235.000 | 6264.000 | 0.000 | 0.210 | 0.106 | 0.180 | 0.185 |
nosinging | 51.000 | 6448.000 | 0.000 | 0.019 | 0.000 | 0.038 | 0.012 |
chanting | 32.000 | 6467.000 | 0.000 | 0.068 | 0.053 | 0.086 | 0.122 |
folk | 48.000 | 6451.000 | 0.000 | 0.036 | 0.018 | 0.044 | 0.063 |
malesinger | 39.000 | 6460.000 | 0.000 | 0.033 | 0.045 | 0.084 | 0.051 |
mellow | 29.000 | 6470.000 | 0.000 | 0.012 | 0.000 | 0.000 | 0.015 |
indian | 313.000 | 6186.000 | 0.000 | 0.284 | 0.185 | 0.319 | 0.269 |
electronica | 39.000 | 6460.000 | 0.000 | 0.028 | 0.000 | 0.055 | 0.045 |
women | 22.000 | 6477.000 | 0.000 | 0.047 | 0.057 | 0.111 | 0.129 |
notopera | 19.000 | 6480.000 | 0.000 | 0.004 | 0.000 | 0.000 | 0.028 |
noise | 16.000 | 6483.000 | 0.000 | 0.016 | 0.065 | 0.000 | 0.021 |
soft | 248.000 | 6251.000 | 0.000 | 0.166 | 0.075 | 0.214 | 0.169 |
femaleopera | 27.000 | 6472.000 | 0.000 | 0.107 | 0.123 | 0.000 | 0.126 |
malevoice | 155.000 | 6344.000 | 0.000 | 0.141 | 0.062 | 0.192 | 0.153 |
organ | 17.000 | 6482.000 | 0.000 | 0.007 | 0.006 | 0.011 | 0.009 |
female | 320.000 | 6179.000 | 0.000 | 0.460 | 0.244 | 0.322 | 0.408 |
classicalguitar | 38.000 | 6461.000 | 0.000 | 0.180 | 0.104 | 0.000 | 0.129 |
operatic | 17.000 | 6482.000 | 0.000 | 0.036 | 0.000 | 0.000 | 0.070 |
airy | 12.000 | 6487.000 | 0.026 | 0.013 | 0.000 | 0.038 | 0.023 |
malevocal | 271.000 | 6228.000 | 0.000 | 0.273 | 0.200 | 0.304 | 0.218 |
clapping | 12.000 | 6487.000 | 0.000 | 0.008 | 0.000 | 0.000 | 0.000 |
choir | 161.000 | 6338.000 | 0.000 | 0.508 | 0.544 | 0.429 | 0.590 |
100 query subset used in Tagatune evaluation
Tag | Positive Examples | Negative Examples | LabX | Mandel | Manzagol | Marsyas | Zhi |
---|---|---|---|---|---|---|---|
sad | 5 | 95.000 | 0.125 | 0.167 | 0.333 | 0.000 | 0.214 |
nodrums | 4 | 96.000 | 0.000 | 0.102 | 0.000 | 0.000 | 0.148 |
femalevoice | 6 | 94.000 | 0.000 | 0.385 | 0.000 | 0.308 | 0.154 |
pop | 10.000 | 90.000 | 0.000 | 0.462 | 0.522 | 0.700 | 0.500 |
rock | 14.000 | 86.000 | 0.000 | 0.710 | 0.333 | 0.718 | 0.688 |
birds | 1 | 99.000 | 0.000 | 0.200 | 0.000 | 0.000 | 0.000 |
harpsicord | 3 | 97.000 | 0.000 | 0.400 | 0.000 | 0.000 | 0.200 |
strange | 2 | 98.000 | 0.000 | 0.085 | 0.000 | 0.000 | 0.000 |
novocal | 12.000 | 88.000 | 0.000 | 0.328 | 0.154 | 0.100 | 0.083 |
solo | 11.000 | 89.000 | 0.000 | 0.276 | 0.154 | 0.235 | 0.211 |
notenglish | 1 | 99.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
novoice | 4 | 96.000 | 0.000 | 0.143 | 0.000 | 0.000 | 0.000 |
newage | 12.000 | 88.000 | 0.000 | 0.421 | 0.000 | 0.400 | 0.333 |
synth | 11.000 | 89.000 | 0.000 | 0.514 | 0.167 | 0.667 | 0.333 |
upbeat | 4 | 96.000 | 0.000 | 0.214 | 0.000 | 0.000 | 0.308 |
slow | 44.000 | 56.000 | 0.000 | 0.769 | 0.259 | 0.733 | 0.485 |
deep | 2 | 98.000 | 0.000 | 0.091 | 0.000 | 0.000 | 0.000 |
fiddle | 1 | 99.000 | 0.000 | 0.069 | 0.000 | 0.000 | 0.000 |
orchestral | 2 | 98.000 | 0.000 | 0.062 | 0.000 | 0.000 | 0.121 |
mansinging | 2 | 98.000 | 0.000 | 0.167 | 0.000 | 0.286 | 0.333 |
wind | 1 | 99.000 | 0.000 | 0.095 | 0.000 | 0.000 | 0.105 |
piano | 9 | 91.000 | 0.000 | 0.286 | 0.100 | 0.286 | 0.267 |
femalesinger | 4 | 96.000 | 0.000 | 0.240 | 0.000 | 0.000 | 0.000 |
singing | 13.000 | 87.000 | 0.000 | 0.667 | 0.235 | 0.480 | 0.500 |
quiet | 16.000 | 84.000 | 0.000 | 0.500 | 0.118 | 0.611 | 0.471 |
tribal | 1 | 99.000 | 0.000 | 0.167 | 0.000 | 0.000 | 1.000 |
noguitar | 2 | 98.000 | 0.000 | 0.073 | 0.000 | 0.000 | 0.000 |
femalevocal | 13.000 | 87.000 | 0.000 | 0.545 | 0.190 | 0.609 | 0.421 |
fastbeat | 1 | 99.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
instrumental | 4 | 96.000 | 0.000 | 0.131 | 0.000 | 0.000 | 0.125 |
chorus | 3 | 97.000 | 0.000 | 0.444 | 0.000 | 0.000 | 0.500 |
silence | 1 | 99.000 | 0.000 | 0.200 | 0.000 | 0.000 | 0.333 |
sax | 2 | 98.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
nobeat | 1 | 99.000 | 0.000 | 0.044 | 0.000 | 0.000 | 0.000 |
nopiano | 3 | 97.000 | 0.000 | 0.095 | 0.000 | 0.333 | 0.000 |
novocals | 15.000 | 85.000 | 0.000 | 0.353 | 0.000 | 0.222 | 0.087 |
low | 5 | 95.000 | 0.000 | 0.207 | 0.000 | 0.000 | 0.000 |
weird | 3 | 97.000 | 0.000 | 0.121 | 0.000 | 0.000 | 0.000 |
dance | 4 | 96.000 | 0.000 | 0.615 | 0.250 | 0.444 | 0.500 |
harp | 3 | 97.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.286 |
horns | 3 | 97.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
funky | 1 | 99.000 | 0.000 | 0.118 | 0.000 | 0.000 | 0.000 |
hardrock | 4 | 96.000 | 0.000 | 0.533 | 0.000 | 0.000 | 0.421 |
bells | 2 | 98.000 | 0.000 | 0.080 | 0.667 | 0.000 | 0.000 |
punk | 4 | 96.000 | 0.000 | 0.615 | 0.857 | 0.000 | 0.500 |
techno | 12.000 | 88.000 | 0.000 | 0.621 | 0.500 | 0.571 | 0.480 |
modern | 5 | 95.000 | 0.000 | 0.158 | 0.333 | 0.250 | 0.364 |
violins | 25.000 | 75.000 | 0.000 | 0.656 | 0.258 | 0.353 | 0.538 |
opera | 6 | 94.000 | 0.000 | 0.571 | 0.182 | 0.462 | 0.571 |
cello | 21.000 | 79.000 | 0.000 | 0.723 | 0.345 | 0.378 | 0.467 |
sitar | 1 | 99.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.500 |
man | 4 | 96.000 | 0.000 | 0.167 | 0.400 | 0.400 | 0.000 |
femalevocals | 9 | 91.000 | 0.000 | 0.462 | 0.000 | 0.353 | 0.286 |
beat | 13.000 | 87.000 | 0.000 | 0.457 | 0.000 | 0.545 | 0.500 |
vocal | 22.000 | 78.000 | 0.000 | 0.708 | 0.000 | 0.718 | 0.345 |
jazz | 3 | 97.000 | 0.000 | 0.333 | 0.000 | 0.000 | 0.333 |
male | 10.000 | 90.000 | 0.000 | 0.438 | 0.133 | 0.545 | 0.000 |
drums | 14.000 | 86.000 | 0.000 | 0.564 | 0.222 | 0.533 | 0.480 |
electronic | 16.000 | 84.000 | 0.000 | 0.571 | 0.316 | 0.690 | 0.533 |
violin | 44.000 | 56.000 | 0.000 | 0.886 | 0.800 | 0.835 | 0.685 |
bass | 5 | 95.000 | 0.000 | 0.171 | 0.000 | 0.250 | 0.000 |
string | 12.000 | 88.000 | 0.000 | 0.333 | 0.000 | 0.000 | 0.160 |
womansinging | 3 | 97.000 | 0.000 | 0.240 | 0.000 | 0.000 | 0.000 |
guitar | 15.000 | 85.000 | 0.000 | 0.500 | 0.500 | 0.393 | 0.381 |
medieval | 5 | 95.000 | 0.000 | 0.267 | 0.000 | 0.000 | 0.000 |
old | 1 | 99.000 | 0.000 | 0.050 | 0.000 | 0.000 | 0.061 |
middleeastern | 1 | 99.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
baroque | 7 | 93.000 | 0.000 | 0.276 | 0.000 | 0.000 | 0.238 |
oriental | 1 | 99.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
trumpet | 2 | 98.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
irish | 1 | 99.000 | 0.000 | 0.091 | 0.000 | 0.000 | 0.222 |
ambient | 14.000 | 86.000 | 0.000 | 0.625 | 0.000 | 0.667 | 0.333 |
funk | 2 | 98.000 | 0.000 | 0.444 | 0.000 | 0.000 | 0.500 |
metal | 5 | 95.000 | 0.160 | 0.714 | 0.333 | 0.000 | 0.500 |
woman | 14.000 | 86.000 | 0.000 | 0.710 | 0.000 | 0.583 | 0.381 |
dark | 1 | 99.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
acoustic | 3 | 97.000 | 0.000 | 0.375 | 0.000 | 0.500 | 0.500 |
light | 1 | 99.000 | 0.000 | 0.040 | 0.000 | 0.000 | 0.500 |
trance | 4 | 96.000 | 0.000 | 0.316 | 0.000 | 0.000 | 0.462 |
celtic | 1 | 99.000 | 0.000 | 0.057 | 0.000 | 0.000 | 0.000 |
electric | 1 | 99.000 | 0.000 | 0.074 | 0.000 | 0.000 | 0.000 |
malevocals | 6 | 94.000 | 0.000 | 0.154 | 0.250 | 0.267 | 0.300 |
heavy | 4 | 96.000 | 0.000 | 0.250 | 0.400 | 0.000 | 0.353 |
jazzy | 3 | 97.000 | 0.000 | 0.267 | 0.750 | 0.000 | 0.462 |
country | 2 | 98.000 | 0.000 | 0.250 | 0.000 | 0.222 | 0.000 |
beats | 4 | 96.000 | 0.000 | 0.087 | 0.000 | 0.000 | 0.000 |
loud | 11.000 | 89.000 | 0.000 | 0.545 | 0.154 | 0.588 | 0.571 |
classical | 48.000 | 52.000 | 0.000 | 0.839 | 0.038 | 0.821 | 0.771 |
voices | 2 | 98.000 | 0.000 | 0.250 | 0.000 | 0.000 | 0.400 |
choral | 7 | 93.000 | 0.000 | 0.500 | 0.000 | 0.000 | 0.333 |
harpsichord | 12.000 | 88.000 | 0.000 | 0.621 | 0.435 | 0.741 | 0.458 |
eastern | 1 | 99.000 | 0.000 | 0.091 | 0.000 | 0.000 | 0.667 |
foreign | 2 | 98.000 | 0.000 | 0.111 | 0.000 | 0.000 | 0.000 |
fast | 17.000 | 83.000 | 0.000 | 0.389 | 0.000 | 0.545 | 0.357 |
english | 1 | 99.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
spacey | 2 | 98.000 | 0.000 | 0.211 | 0.000 | 0.667 | 0.095 |
electro | 4 | 96.000 | 0.000 | 0.231 | 0.000 | 0.000 | 0.308 |
calm | 6 | 94.000 | 0.000 | 0.087 | 0.000 | 0.000 | 0.000 |
voice | 10.000 | 90.000 | 0.000 | 0.545 | 0.000 | 0.333 | 0.143 |
vocals | 16.000 | 84.000 | 0.000 | 0.512 | 0.273 | 0.387 | 0.200 |
singer | 1 | 99.000 | 0.000 | 0.069 | 0.500 | 0.000 | 0.000 |
strings | 47.000 | 53.000 | 0.000 | 0.905 | 0.151 | 0.872 | 0.780 |
orchestra | 5 | 95.000 | 0.000 | 0.138 | 0.000 | 0.000 | 0.000 |
chant | 4 | 96.000 | 0.000 | 0.444 | 0.000 | 0.400 | 0.667 |
heavymetal | 2 | 98.000 | 0.000 | 0.364 | 0.000 | 0.000 | 0.308 |
girl | 2 | 98.000 | 0.000 | 0.083 | 0.000 | 0.000 | 0.333 |
flute | 8 | 92.000 | 0.000 | 0.444 | 0.500 | 0.316 | 0.143 |
drum | 3 | 97.000 | 0.000 | 0.160 | 0.000 | 0.500 | 0.000 |
classic | 24.000 | 76.000 | 0.000 | 0.687 | 0.148 | 0.368 | 0.462 |
nosinging | 3 | 97.000 | 0.000 | 0.094 | 0.000 | 0.000 | 0.000 |
chanting | 2 | 98.000 | 0.000 | 0.222 | 0.000 | 0.000 | 0.000 |
folk | 2 | 98.000 | 0.000 | 0.105 | 0.000 | 0.000 | 0.000 |
malesinger | 1 | 99.000 | 0.000 | 0.077 | 0.500 | 0.286 | 0.000 |
mellow | 5 | 95.000 | 0.000 | 0.176 | 0.000 | 0.000 | 0.000 |
indian | 3 | 97.000 | 0.000 | 0.154 | 0.000 | 0.000 | 0.400 |
electronica | 2 | 98.000 | 0.000 | 0.125 | 0.000 | 0.000 | 0.200 |
women | 3 | 97.000 | 0.000 | 0.235 | 0.000 | 0.500 | 0.333 |
soft | 21.000 | 79.000 | 0.000 | 0.353 | 0.000 | 0.308 | 0.242 |
malevoice | 9 | 91.000 | 0.000 | 0.452 | 0.000 | 0.471 | 0.143 |
organ | 1 | 99.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
female | 19.000 | 81.000 | 0.000 | 0.842 | 0.516 | 0.688 | 0.444 |
classicalguitar | 1 | 99.000 | 0.000 | 0.500 | 0.000 | 0.000 | 0.500 |
airy | 4 | 96.000 | 0.000 | 0.258 | 0.000 | 0.400 | 0.381 |
malevocal | 11.000 | 89.000 | 0.000 | 0.545 | 0.333 | 0.571 | 0.286 |
clapping | 2 | 98.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
choir | 7 | 93.000 | 0.000 | 0.615 | 0.250 | 0.308 | 0.500 |
Binary Accuracy
Full dataset
Tag | Positive Examples | Negative Examples | LabX | Mandel | Manzagol | Marsyas | Zhi |
---|---|---|---|---|---|---|---|
nostrings | 13.000 | 6486.000 | 0.998 | 0.496 | 0.998 | 0.992 | 0.986 |
chimes | 22.000 | 6477.000 | 0.986 | 0.778 | 0.994 | 0.992 | 0.981 |
sad | 18.000 | 6481.000 | 0.894 | 0.705 | 0.995 | 0.989 | 0.862 |
nodrums | 48.000 | 6451.000 | 0.993 | 0.569 | 0.991 | 0.977 | 0.824 |
femalevoice | 105.000 | 6394.000 | 0.984 | 0.851 | 0.962 | 0.945 | 0.950 |
horn | 7 | 6492.000 | 0.996 | 0.801 | 0.997 | 0.991 | 0.978 |
pop | 196.000 | 6303.000 | 0.970 | 0.749 | 0.877 | 0.921 | 0.838 |
rock | 601.000 | 5898.000 | 0.908 | 0.878 | 0.922 | 0.863 | 0.859 |
house | 22.000 | 6477.000 | 0.997 | 0.793 | 0.989 | 0.991 | 0.939 |
birds | 7 | 6492.000 | 0.998 | 0.922 | 0.997 | 0.991 | 0.923 |
harpsicord | 59.000 | 6440.000 | 0.991 | 0.929 | 0.979 | 0.964 | 0.864 |
strange | 22.000 | 6477.000 | 0.997 | 0.588 | 0.996 | 0.986 | 0.960 |
noflute | 35.000 | 6464.000 | 0.987 | 0.559 | 0.994 | 0.982 | 0.939 |
novocal | 263.000 | 6236.000 | 0.960 | 0.548 | 0.952 | 0.870 | 0.816 |
solo | 217.000 | 6282.000 | 0.966 | 0.831 | 0.960 | 0.890 | 0.861 |
notenglish | 11.000 | 6488.000 | 0.998 | 0.839 | 0.998 | 0.990 | 0.972 |
novoice | 146.000 | 6353.000 | 0.978 | 0.569 | 0.972 | 0.935 | 0.865 |
newage | 157.000 | 6342.000 | 0.976 | 0.759 | 0.974 | 0.936 | 0.783 |
synth | 294.000 | 6205.000 | 0.955 | 0.696 | 0.949 | 0.874 | 0.789 |
upbeat | 52.000 | 6447.000 | 0.992 | 0.693 | 0.979 | 0.980 | 0.883 |
slow | 1043.000 | 5456.000 | 0.840 | 0.708 | 0.814 | 0.716 | 0.743 |
deep | 12.000 | 6487.000 | 0.998 | 0.830 | 0.996 | 0.991 | 0.953 |
fiddle | 14.000 | 6485.000 | 0.998 | 0.817 | 0.991 | 0.989 | 0.950 |
orchestral | 12.000 | 6487.000 | 0.998 | 0.779 | 0.995 | 0.989 | 0.908 |
notclassical | 14.000 | 6485.000 | 0.998 | 0.660 | 0.996 | 0.992 | 0.945 |
mansinging | 46.000 | 6453.000 | 0.993 | 0.748 | 0.972 | 0.982 | 0.955 |
wind | 22.000 | 6477.000 | 0.994 | 0.834 | 0.987 | 0.984 | 0.878 |
piano | 630.000 | 5869.000 | 0.903 | 0.879 | 0.891 | 0.758 | 0.889 |
spanish | 65.000 | 6434.000 | 0.990 | 0.826 | 0.973 | 0.976 | 0.954 |
femalesinger | 30.000 | 6469.000 | 0.995 | 0.870 | 0.992 | 0.984 | 0.974 |
singing | 242.000 | 6257.000 | 0.963 | 0.802 | 0.942 | 0.889 | 0.931 |
quiet | 263.000 | 6236.000 | 0.960 | 0.792 | 0.957 | 0.890 | 0.813 |
oboe | 12.000 | 6487.000 | 0.998 | 0.935 | 0.977 | 0.977 | 0.917 |
tribal | 40.000 | 6459.000 | 0.994 | 0.770 | 0.992 | 0.975 | 0.973 |
noguitar | 46.000 | 6453.000 | 0.993 | 0.560 | 0.992 | 0.972 | 0.916 |
femalevocal | 126.000 | 6373.000 | 0.981 | 0.870 | 0.936 | 0.933 | 0.949 |
fastbeat | 33.000 | 6466.000 | 0.995 | 0.784 | 0.991 | 0.989 | 0.914 |
hiphop | 32.000 | 6467.000 | 0.995 | 0.906 | 0.992 | 0.991 | 0.978 |
instrumental | 102.000 | 6397.000 | 0.976 | 0.598 | 0.965 | 0.950 | 0.819 |
chorus | 50.000 | 6449.000 | 0.992 | 0.939 | 0.982 | 0.970 | 0.965 |
silence | 12.000 | 6487.000 | 0.983 | 0.901 | 0.992 | 0.991 | 0.959 |
duet | 18.000 | 6481.000 | 0.997 | 0.890 | 0.986 | 0.988 | 0.938 |
sax | 20.000 | 6479.000 | 0.974 | 0.896 | 0.986 | 0.988 | 0.960 |
nobeat | 14.000 | 6485.000 | 0.994 | 0.677 | 0.997 | 0.990 | 0.943 |
nopiano | 90.000 | 6409.000 | 0.948 | 0.571 | 0.983 | 0.956 | 0.894 |
novocals | 326.000 | 6173.000 | 0.950 | 0.546 | 0.948 | 0.856 | 0.814 |
pianosolo | 13.000 | 6486.000 | 0.998 | 0.854 | 0.986 | 0.991 | 0.932 |
low | 35.000 | 6464.000 | 0.995 | 0.816 | 0.986 | 0.981 | 0.872 |
weird | 120.000 | 6379.000 | 0.982 | 0.641 | 0.975 | 0.946 | 0.914 |
dance | 184.000 | 6315.000 | 0.972 | 0.823 | 0.941 | 0.939 | 0.888 |
harp | 137.000 | 6362.000 | 0.979 | 0.885 | 0.974 | 0.932 | 0.882 |
horns | 12.000 | 6487.000 | 0.989 | 0.935 | 0.992 | 0.988 | 0.975 |
funky | 66.000 | 6433.000 | 0.990 | 0.774 | 0.972 | 0.979 | 0.916 |
hardrock | 80.000 | 6419.000 | 0.988 | 0.894 | 0.981 | 0.968 | 0.887 |
bells | 36.000 | 6463.000 | 0.994 | 0.731 | 0.989 | 0.981 | 0.972 |
punk | 42.000 | 6457.000 | 0.964 | 0.927 | 0.959 | 0.986 | 0.924 |
electricguitar | 51.000 | 6448.000 | 0.992 | 0.820 | 0.988 | 0.978 | 0.868 |
techno | 827.000 | 5672.000 | 0.873 | 0.832 | 0.892 | 0.853 | 0.877 |
modern | 73.000 | 6426.000 | 0.989 | 0.592 | 0.975 | 0.965 | 0.896 |
violins | 258.000 | 6241.000 | 0.939 | 0.819 | 0.933 | 0.922 | 0.849 |
noviolin | 18.000 | 6481.000 | 0.997 | 0.519 | 0.996 | 0.989 | 0.965 |
opera | 325.000 | 6174.000 | 0.950 | 0.954 | 0.955 | 0.847 | 0.955 |
india | 22.000 | 6477.000 | 0.996 | 0.770 | 0.996 | 0.991 | 0.989 |
cello | 145.000 | 6354.000 | 0.978 | 0.947 | 0.950 | 0.913 | 0.955 |
sitar | 250.000 | 6249.000 | 0.962 | 0.890 | 0.960 | 0.928 | 0.890 |
hard | 25.000 | 6474.000 | 0.991 | 0.884 | 0.994 | 0.990 | 0.894 |
banjo | 15.000 | 6484.000 | 0.998 | 0.959 | 0.994 | 0.977 | 0.942 |
blues | 42.000 | 6457.000 | 0.994 | 0.921 | 0.987 | 0.982 | 0.989 |
man | 128.000 | 6371.000 | 0.980 | 0.792 | 0.964 | 0.951 | 0.958 |
water | 12.000 | 6487.000 | 0.998 | 0.911 | 0.994 | 0.991 | 0.896 |
femalevocals | 90.000 | 6409.000 | 0.986 | 0.867 | 0.962 | 0.957 | 0.964 |
beat | 534.000 | 5965.000 | 0.918 | 0.755 | 0.910 | 0.893 | 0.865 |
vocal | 346.000 | 6153.000 | 0.947 | 0.784 | 0.930 | 0.847 | 0.916 |
jazz | 88.000 | 6411.000 | 0.986 | 0.812 | 0.940 | 0.957 | 0.905 |
male | 316.000 | 6183.000 | 0.951 | 0.822 | 0.934 | 0.895 | 0.922 |
maleopera | 18.000 | 6481.000 | 0.997 | 0.966 | 0.991 | 0.988 | 0.966 |
drums | 663.000 | 5836.000 | 0.898 | 0.714 | 0.863 | 0.803 | 0.819 |
electronic | 578.000 | 5921.000 | 0.911 | 0.737 | 0.902 | 0.818 | 0.817 |
talking | 27.000 | 6472.000 | 0.996 | 0.834 | 0.995 | 0.988 | 0.985 |
violin | 908.000 | 5591.000 | 0.860 | 0.876 | 0.872 | 0.806 | 0.863 |
bass | 73.000 | 6426.000 | 0.989 | 0.698 | 0.976 | 0.965 | 0.902 |
notrock | 19.000 | 6480.000 | 0.997 | 0.493 | 0.996 | 0.991 | 0.983 |
string | 91.000 | 6408.000 | 0.986 | 0.719 | 0.972 | 0.959 | 0.846 |
womansinging | 32.000 | 6467.000 | 0.995 | 0.854 | 0.990 | 0.982 | 0.982 |
guitar | 1166.000 | 5333.000 | 0.821 | 0.821 | 0.851 | 0.691 | 0.843 |
medieval | 39.000 | 6460.000 | 0.994 | 0.791 | 0.988 | 0.976 | 0.874 |
clarinet | 16.000 | 6483.000 | 0.998 | 0.893 | 0.992 | 0.989 | 0.950 |
world | 14.000 | 6485.000 | 0.998 | 0.605 | 0.996 | 0.992 | 0.983 |
old | 14.000 | 6485.000 | 0.998 | 0.713 | 0.995 | 0.993 | 0.821 |
middleeastern | 17.000 | 6482.000 | 0.968 | 0.680 | 0.989 | 0.987 | 0.953 |
baroque | 81.000 | 6418.000 | 0.854 | 0.843 | 0.980 | 0.955 | 0.796 |
oriental | 50.000 | 6449.000 | 0.992 | 0.725 | 0.974 | 0.980 | 0.936 |
trumpet | 17.000 | 6482.000 | 0.958 | 0.847 | 0.996 | 0.990 | 0.992 |
irish | 49.000 | 6450.000 | 0.992 | 0.858 | 0.983 | 0.976 | 0.912 |
ambient | 419.000 | 6080.000 | 0.936 | 0.866 | 0.936 | 0.858 | 0.814 |
funk | 32.000 | 6467.000 | 0.995 | 0.870 | 0.987 | 0.990 | 0.944 |
metal | 159.000 | 6340.000 | 0.842 | 0.912 | 0.973 | 0.939 | 0.887 |
woman | 186.000 | 6313.000 | 0.971 | 0.889 | 0.956 | 0.914 | 0.948 |
dark | 36.000 | 6463.000 | 0.994 | 0.798 | 0.992 | 0.979 | 0.856 |
acoustic | 66.000 | 6433.000 | 0.974 | 0.842 | 0.966 | 0.979 | 0.941 |
light | 16.000 | 6483.000 | 0.998 | 0.607 | 0.996 | 0.989 | 0.954 |
repetitive | 24.000 | 6475.000 | 0.948 | 0.755 | 0.996 | 0.992 | 0.989 |
trance | 51.000 | 6448.000 | 0.992 | 0.757 | 0.985 | 0.975 | 0.881 |
celtic | 27.000 | 6472.000 | 0.996 | 0.751 | 0.992 | 0.987 | 0.963 |
electric | 44.000 | 6455.000 | 0.993 | 0.610 | 0.971 | 0.976 | 0.932 |
malevocals | 123.000 | 6376.000 | 0.930 | 0.776 | 0.958 | 0.952 | 0.872 |
heavy | 59.000 | 6440.000 | 0.928 | 0.873 | 0.984 | 0.975 | 0.876 |
jazzy | 68.000 | 6431.000 | 0.990 | 0.806 | 0.939 | 0.968 | 0.919 |
country | 122.000 | 6377.000 | 0.981 | 0.880 | 0.925 | 0.945 | 0.952 |
beats | 157.000 | 6342.000 | 0.967 | 0.721 | 0.952 | 0.947 | 0.881 |
loud | 313.000 | 6186.000 | 0.952 | 0.827 | 0.947 | 0.923 | 0.842 |
classical | 1544.000 | 4955.000 | 0.762 | 0.848 | 0.768 | 0.569 | 0.788 |
voices | 39.000 | 6460.000 | 0.994 | 0.842 | 0.990 | 0.976 | 0.965 |
flutes | 54.000 | 6445.000 | 0.992 | 0.904 | 0.982 | 0.976 | 0.957 |
choral | 104.000 | 6395.000 | 0.984 | 0.952 | 0.984 | 0.959 | 0.971 |
harpsichord | 263.000 | 6236.000 | 0.960 | 0.906 | 0.908 | 0.894 | 0.828 |
eastern | 80.000 | 6419.000 | 0.988 | 0.736 | 0.978 | 0.959 | 0.920 |
foreign | 51.000 | 6448.000 | 0.992 | 0.824 | 0.974 | 0.970 | 0.980 |
fast | 616.000 | 5883.000 | 0.905 | 0.723 | 0.902 | 0.804 | 0.799 |
english | 11.000 | 6488.000 | 0.998 | 0.768 | 0.991 | 0.991 | 0.978 |
spacey | 27.000 | 6472.000 | 0.996 | 0.857 | 0.994 | 0.983 | 0.892 |
electro | 87.000 | 6412.000 | 0.985 | 0.686 | 0.980 | 0.957 | 0.874 |
calm | 33.000 | 6466.000 | 0.984 | 0.653 | 0.989 | 0.985 | 0.921 |
lute | 15.000 | 6484.000 | 0.998 | 0.922 | 0.990 | 0.984 | 0.937 |
arabic | 10.000 | 6489.000 | 0.998 | 0.732 | 0.984 | 0.988 | 0.971 |
voice | 111.000 | 6388.000 | 0.983 | 0.708 | 0.964 | 0.938 | 0.938 |
vocals | 256.000 | 6243.000 | 0.961 | 0.743 | 0.906 | 0.886 | 0.920 |
rap | 41.000 | 6458.000 | 0.994 | 0.934 | 0.978 | 0.986 | 0.985 |
singer | 25.000 | 6474.000 | 0.996 | 0.736 | 0.979 | 0.986 | 0.985 |
strings | 997.000 | 5502.000 | 0.847 | 0.795 | 0.841 | 0.756 | 0.771 |
orchestra | 98.000 | 6401.000 | 0.985 | 0.840 | 0.975 | 0.945 | 0.860 |
guitars | 25.000 | 6474.000 | 0.996 | 0.730 | 0.992 | 0.990 | 0.919 |
chant | 51.000 | 6448.000 | 0.992 | 0.950 | 0.989 | 0.982 | 0.971 |
heavymetal | 43.000 | 6456.000 | 0.993 | 0.904 | 0.982 | 0.986 | 0.918 |
girl | 10.000 | 6489.000 | 0.976 | 0.756 | 0.997 | 0.992 | 0.971 |
percussion | 26.000 | 6473.000 | 0.862 | 0.729 | 0.993 | 0.981 | 0.961 |
flute | 455.000 | 6044.000 | 0.930 | 0.927 | 0.944 | 0.889 | 0.902 |
drum | 89.000 | 6410.000 | 0.986 | 0.689 | 0.976 | 0.960 | 0.931 |
classic | 235.000 | 6264.000 | 0.964 | 0.760 | 0.938 | 0.888 | 0.807 |
nosinging | 51.000 | 6448.000 | 0.992 | 0.529 | 0.987 | 0.977 | 0.926 |
chanting | 32.000 | 6467.000 | 0.995 | 0.945 | 0.994 | 0.984 | 0.969 |
folk | 48.000 | 6451.000 | 0.993 | 0.802 | 0.983 | 0.973 | 0.968 |
malesinger | 39.000 | 6460.000 | 0.994 | 0.748 | 0.927 | 0.980 | 0.942 |
mellow | 29.000 | 6470.000 | 0.992 | 0.649 | 0.992 | 0.987 | 0.958 |
indian | 313.000 | 6186.000 | 0.952 | 0.813 | 0.942 | 0.878 | 0.927 |
electronica | 39.000 | 6460.000 | 0.994 | 0.629 | 0.988 | 0.979 | 0.921 |
women | 22.000 | 6477.000 | 0.997 | 0.886 | 0.995 | 0.990 | 0.981 |
notopera | 19.000 | 6480.000 | 0.997 | 0.558 | 0.997 | 0.991 | 0.989 |
noise | 16.000 | 6483.000 | 0.998 | 0.792 | 0.996 | 0.981 | 0.901 |
soft | 248.000 | 6251.000 | 0.962 | 0.754 | 0.947 | 0.889 | 0.823 |
femaleopera | 27.000 | 6472.000 | 0.996 | 0.936 | 0.985 | 0.980 | 0.949 |
malevoice | 155.000 | 6344.000 | 0.976 | 0.766 | 0.949 | 0.940 | 0.933 |
organ | 17.000 | 6482.000 | 0.997 | 0.786 | 0.951 | 0.973 | 0.867 |
female | 320.000 | 6179.000 | 0.951 | 0.905 | 0.896 | 0.856 | 0.936 |
classicalguitar | 38.000 | 6461.000 | 0.994 | 0.958 | 0.973 | 0.975 | 0.932 |
operatic | 17.000 | 6482.000 | 0.997 | 0.867 | 0.996 | 0.989 | 0.943 |
airy | 12.000 | 6487.000 | 0.988 | 0.762 | 0.997 | 0.992 | 0.881 |
malevocal | 271.000 | 6228.000 | 0.958 | 0.810 | 0.908 | 0.911 | 0.889 |
clapping | 12.000 | 6487.000 | 0.998 | 0.815 | 0.997 | 0.992 | 0.996 |
choir | 161.000 | 6338.000 | 0.975 | 0.958 | 0.983 | 0.951 | 0.974 |
100 query subset used in Tagatune evaluation
Tag | Positive Examples | Negative Examples | LabX | Mandel | Manzagol | Marsyas | Zhi |
---|---|---|---|---|---|---|---|
sad | 5 | 95.000 | 0.860 | 0.600 | 0.960 | 0.950 | 0.780 |
nodrums | 4 | 96.000 | 0.960 | 0.470 | 0.960 | 0.950 | 0.770 |
femalevoice | 6 | 94.000 | 0.940 | 0.840 | 0.900 | 0.910 | 0.890 |
pop | 10.000 | 90.000 | 0.900 | 0.790 | 0.890 | 0.940 | 0.860 |
rock | 14.000 | 86.000 | 0.860 | 0.910 | 0.880 | 0.890 | 0.900 |
birds | 1 | 99.000 | 0.990 | 0.920 | 0.990 | 0.990 | 0.830 |
harpsicord | 3 | 97.000 | 0.970 | 0.910 | 0.950 | 0.970 | 0.760 |
strange | 2 | 98.000 | 0.980 | 0.570 | 0.980 | 0.960 | 0.930 |
novocal | 12.000 | 88.000 | 0.880 | 0.590 | 0.890 | 0.820 | 0.780 |
solo | 11.000 | 89.000 | 0.890 | 0.790 | 0.890 | 0.870 | 0.850 |
notenglish | 1 | 99.000 | 0.990 | 0.820 | 0.990 | 0.990 | 0.930 |
novoice | 4 | 96.000 | 0.960 | 0.640 | 0.960 | 0.940 | 0.930 |
newage | 12.000 | 88.000 | 0.880 | 0.780 | 0.880 | 0.910 | 0.760 |
synth | 11.000 | 89.000 | 0.890 | 0.830 | 0.900 | 0.940 | 0.840 |
upbeat | 4 | 96.000 | 0.960 | 0.780 | 0.950 | 0.960 | 0.910 |
slow | 44.000 | 56.000 | 0.560 | 0.790 | 0.600 | 0.760 | 0.660 |
deep | 2 | 98.000 | 0.980 | 0.800 | 0.980 | 0.970 | 0.910 |
fiddle | 1 | 99.000 | 0.990 | 0.730 | 0.990 | 0.980 | 0.920 |
orchestral | 2 | 98.000 | 0.980 | 0.700 | 0.980 | 0.980 | 0.710 |
mansinging | 2 | 98.000 | 0.980 | 0.800 | 0.980 | 0.950 | 0.960 |
wind | 1 | 99.000 | 0.990 | 0.810 | 0.980 | 0.980 | 0.830 |
piano | 9 | 91.000 | 0.910 | 0.800 | 0.820 | 0.650 | 0.890 |
femalesinger | 4 | 96.000 | 0.960 | 0.810 | 0.940 | 0.940 | 0.940 |
singing | 13.000 | 87.000 | 0.870 | 0.890 | 0.870 | 0.870 | 0.900 |
quiet | 16.000 | 84.000 | 0.840 | 0.780 | 0.850 | 0.860 | 0.820 |
tribal | 1 | 99.000 | 0.990 | 0.900 | 0.990 | 0.980 | 1.000 |
noguitar | 2 | 98.000 | 0.980 | 0.490 | 0.980 | 0.970 | 0.890 |
femalevocal | 13.000 | 87.000 | 0.870 | 0.850 | 0.830 | 0.910 | 0.890 |
fastbeat | 1 | 99.000 | 0.990 | 0.850 | 0.990 | 0.980 | 0.920 |
instrumental | 4 | 96.000 | 0.960 | 0.470 | 0.950 | 0.930 | 0.860 |
chorus | 3 | 97.000 | 0.970 | 0.950 | 0.970 | 0.940 | 0.960 |
silence | 1 | 99.000 | 0.960 | 0.920 | 0.990 | 0.980 | 0.960 |
sax | 2 | 98.000 | 0.970 | 0.890 | 0.970 | 0.980 | 0.930 |
nobeat | 1 | 99.000 | 0.990 | 0.570 | 0.990 | 0.980 | 0.880 |
nopiano | 3 | 97.000 | 0.910 | 0.430 | 0.970 | 0.960 | 0.840 |
novocals | 15.000 | 85.000 | 0.850 | 0.560 | 0.850 | 0.790 | 0.790 |
low | 5 | 95.000 | 0.950 | 0.770 | 0.950 | 0.940 | 0.830 |
weird | 3 | 97.000 | 0.970 | 0.710 | 0.970 | 0.920 | 0.930 |
dance | 4 | 96.000 | 0.960 | 0.950 | 0.940 | 0.950 | 0.940 |
harp | 3 | 97.000 | 0.970 | 0.900 | 0.970 | 0.950 | 0.950 |
horns | 3 | 97.000 | 0.970 | 0.850 | 0.970 | 0.950 | 0.950 |
funky | 1 | 99.000 | 0.990 | 0.850 | 0.990 | 0.970 | 0.970 |
hardrock | 4 | 96.000 | 0.960 | 0.930 | 0.960 | 0.950 | 0.890 |
bells | 2 | 98.000 | 0.980 | 0.770 | 0.990 | 0.970 | 0.980 |
punk | 4 | 96.000 | 0.900 | 0.950 | 0.990 | 0.960 | 0.920 |
techno | 12.000 | 88.000 | 0.880 | 0.890 | 0.920 | 0.880 | 0.870 |
modern | 5 | 95.000 | 0.950 | 0.680 | 0.960 | 0.940 | 0.930 |
violins | 25.000 | 75.000 | 0.730 | 0.790 | 0.770 | 0.780 | 0.760 |
opera | 6 | 94.000 | 0.940 | 0.940 | 0.910 | 0.860 | 0.940 |
cello | 21.000 | 79.000 | 0.790 | 0.870 | 0.810 | 0.770 | 0.840 |
sitar | 1 | 99.000 | 0.990 | 0.910 | 0.950 | 0.930 | 0.980 |
man | 4 | 96.000 | 0.960 | 0.800 | 0.970 | 0.940 | 0.950 |
femalevocals | 9 | 91.000 | 0.910 | 0.860 | 0.900 | 0.890 | 0.900 |
beat | 13.000 | 87.000 | 0.870 | 0.810 | 0.870 | 0.900 | 0.880 |
vocal | 22.000 | 78.000 | 0.780 | 0.860 | 0.760 | 0.890 | 0.810 |
jazz | 3 | 97.000 | 0.970 | 0.920 | 0.960 | 0.930 | 0.920 |
male | 10.000 | 90.000 | 0.900 | 0.820 | 0.870 | 0.900 | 0.880 |
drums | 14.000 | 86.000 | 0.860 | 0.830 | 0.860 | 0.860 | 0.870 |
electronic | 16.000 | 84.000 | 0.840 | 0.850 | 0.870 | 0.910 | 0.860 |
violin | 44.000 | 56.000 | 0.560 | 0.900 | 0.840 | 0.850 | 0.770 |
bass | 5 | 95.000 | 0.950 | 0.710 | 0.950 | 0.940 | 0.930 |
string | 12.000 | 88.000 | 0.880 | 0.640 | 0.880 | 0.850 | 0.790 |
womansinging | 3 | 97.000 | 0.970 | 0.810 | 0.940 | 0.950 | 0.960 |
guitar | 15.000 | 85.000 | 0.850 | 0.840 | 0.900 | 0.630 | 0.870 |
medieval | 5 | 95.000 | 0.950 | 0.780 | 0.950 | 0.950 | 0.830 |
old | 1 | 99.000 | 0.990 | 0.620 | 0.990 | 0.990 | 0.690 |
middleeastern | 1 | 99.000 | 0.950 | 0.590 | 0.990 | 0.990 | 0.950 |
baroque | 7 | 93.000 | 0.830 | 0.790 | 0.930 | 0.900 | 0.680 |
oriental | 1 | 99.000 | 0.990 | 0.680 | 0.970 | 0.990 | 0.990 |
trumpet | 2 | 98.000 | 0.940 | 0.820 | 0.980 | 0.970 | 0.980 |
irish | 1 | 99.000 | 0.990 | 0.800 | 0.980 | 0.980 | 0.930 |
ambient | 14.000 | 86.000 | 0.860 | 0.880 | 0.860 | 0.890 | 0.720 |
funk | 2 | 98.000 | 0.980 | 0.950 | 0.980 | 0.980 | 0.980 |
metal | 5 | 95.000 | 0.790 | 0.960 | 0.960 | 0.900 | 0.900 |
woman | 14.000 | 86.000 | 0.860 | 0.910 | 0.860 | 0.900 | 0.870 |
dark | 1 | 99.000 | 0.990 | 0.760 | 0.990 | 0.990 | 0.790 |
acoustic | 3 | 97.000 | 0.960 | 0.900 | 0.960 | 0.980 | 0.980 |
light | 1 | 99.000 | 0.990 | 0.520 | 0.990 | 0.980 | 0.980 |
trance | 4 | 96.000 | 0.960 | 0.870 | 0.960 | 0.950 | 0.930 |
celtic | 1 | 99.000 | 0.990 | 0.670 | 0.990 | 0.980 | 0.920 |
electric | 1 | 99.000 | 0.990 | 0.750 | 0.960 | 0.980 | 0.940 |
malevocals | 6 | 94.000 | 0.890 | 0.780 | 0.940 | 0.890 | 0.860 |
heavy | 4 | 96.000 | 0.930 | 0.880 | 0.970 | 0.940 | 0.890 |
jazzy | 3 | 97.000 | 0.970 | 0.890 | 0.980 | 0.930 | 0.930 |
country | 2 | 98.000 | 0.980 | 0.880 | 0.940 | 0.930 | 0.960 |
beats | 4 | 96.000 | 0.950 | 0.790 | 0.930 | 0.960 | 0.880 |
loud | 11.000 | 89.000 | 0.890 | 0.850 | 0.890 | 0.930 | 0.880 |
classical | 48.000 | 52.000 | 0.520 | 0.850 | 0.500 | 0.790 | 0.810 |
voices | 2 | 98.000 | 0.980 | 0.880 | 0.980 | 0.970 | 0.970 |
choral | 7 | 93.000 | 0.930 | 0.940 | 0.920 | 0.900 | 0.920 |
harpsichord | 12.000 | 88.000 | 0.880 | 0.890 | 0.870 | 0.930 | 0.740 |
eastern | 1 | 99.000 | 0.990 | 0.800 | 0.990 | 0.970 | 0.990 |
foreign | 2 | 98.000 | 0.980 | 0.840 | 0.960 | 0.960 | 0.960 |
fast | 17.000 | 83.000 | 0.830 | 0.780 | 0.820 | 0.850 | 0.820 |
english | 1 | 99.000 | 0.990 | 0.780 | 0.980 | 0.970 | 0.970 |
spacey | 2 | 98.000 | 0.980 | 0.850 | 0.980 | 0.990 | 0.810 |
electro | 4 | 96.000 | 0.960 | 0.800 | 0.950 | 0.960 | 0.910 |
calm | 6 | 94.000 | 0.930 | 0.580 | 0.920 | 0.940 | 0.920 |
voice | 10.000 | 90.000 | 0.900 | 0.850 | 0.880 | 0.880 | 0.880 |
vocals | 16.000 | 84.000 | 0.840 | 0.790 | 0.840 | 0.810 | 0.840 |
singer | 1 | 99.000 | 0.990 | 0.730 | 0.980 | 0.960 | 0.960 |
strings | 47.000 | 53.000 | 0.530 | 0.910 | 0.550 | 0.880 | 0.820 |
orchestra | 5 | 95.000 | 0.950 | 0.750 | 0.940 | 0.910 | 0.690 |
chant | 4 | 96.000 | 0.960 | 0.950 | 0.960 | 0.970 | 0.980 |
heavymetal | 2 | 98.000 | 0.980 | 0.930 | 0.970 | 0.980 | 0.910 |
girl | 2 | 98.000 | 0.960 | 0.780 | 0.980 | 0.960 | 0.960 |
flute | 8 | 92.000 | 0.920 | 0.900 | 0.940 | 0.870 | 0.880 |
drum | 3 | 97.000 | 0.970 | 0.790 | 0.970 | 0.980 | 0.950 |
classic | 24.000 | 76.000 | 0.760 | 0.790 | 0.770 | 0.760 | 0.720 |
nosinging | 3 | 97.000 | 0.970 | 0.420 | 0.970 | 0.970 | 0.920 |
chanting | 2 | 98.000 | 0.980 | 0.930 | 0.980 | 0.970 | 0.960 |
folk | 2 | 98.000 | 0.980 | 0.830 | 0.980 | 0.950 | 0.970 |
malesinger | 1 | 99.000 | 0.990 | 0.760 | 0.980 | 0.950 | 0.920 |
mellow | 5 | 95.000 | 0.940 | 0.720 | 0.950 | 0.940 | 0.920 |
indian | 3 | 97.000 | 0.970 | 0.890 | 0.960 | 0.850 | 0.970 |
electronica | 2 | 98.000 | 0.980 | 0.720 | 0.980 | 0.960 | 0.920 |
women | 3 | 97.000 | 0.970 | 0.870 | 0.970 | 0.980 | 0.960 |
soft | 21.000 | 79.000 | 0.790 | 0.670 | 0.770 | 0.730 | 0.750 |
malevoice | 9 | 91.000 | 0.910 | 0.830 | 0.890 | 0.910 | 0.880 |
organ | 1 | 99.000 | 0.990 | 0.730 | 0.920 | 0.990 | 0.830 |
female | 19.000 | 81.000 | 0.810 | 0.940 | 0.850 | 0.900 | 0.850 |
classicalguitar | 1 | 99.000 | 0.990 | 0.980 | 0.990 | 0.980 | 0.980 |
airy | 4 | 96.000 | 0.950 | 0.770 | 0.960 | 0.970 | 0.870 |
malevocal | 11.000 | 89.000 | 0.890 | 0.850 | 0.880 | 0.910 | 0.850 |
clapping | 2 | 98.000 | 0.980 | 0.870 | 0.980 | 0.970 | 0.980 |
choir | 7 | 93.000 | 0.930 | 0.950 | 0.940 | 0.910 | 0.940 |
Positive Example Accuracy
Full dataset
Tag | Positive Examples | Negative Examples | LabX | Mandel | Manzagol | Marsyas | Zhi |
---|---|---|---|---|---|---|---|
nostrings | 13.000 | 6486.000 | 0.000 | 0.615 | 0.000 | 0.000 | 0.000 |
chimes | 22.000 | 6477.000 | 0.045 | 0.545 | 0.000 | 0.045 | 0.136 |
sad | 18.000 | 6481.000 | 0.111 | 0.778 | 0.056 | 0.000 | 0.667 |
nodrums | 48.000 | 6451.000 | 0.000 | 0.562 | 0.000 | 0.000 | 0.208 |
femalevoice | 105.000 | 6394.000 | 0.000 | 0.762 | 0.105 | 0.295 | 0.333 |
horn | 7 | 6492.000 | 0.000 | 0.286 | 0.000 | 0.000 | 0.143 |
pop | 196.000 | 6303.000 | 0.000 | 0.827 | 0.459 | 0.444 | 0.505 |
rock | 601.000 | 5898.000 | 0.000 | 0.847 | 0.426 | 0.907 | 0.839 |
house | 22.000 | 6477.000 | 0.000 | 0.773 | 0.045 | 0.000 | 0.273 |
birds | 7 | 6492.000 | 0.000 | 0.429 | 0.000 | 0.143 | 0.714 |
harpsicord | 59.000 | 6440.000 | 0.000 | 0.780 | 0.169 | 0.525 | 0.780 |
strange | 22.000 | 6477.000 | 0.000 | 0.909 | 0.000 | 0.091 | 0.136 |
noflute | 35.000 | 6464.000 | 0.000 | 0.314 | 0.000 | 0.000 | 0.086 |
novocal | 263.000 | 6236.000 | 0.000 | 0.616 | 0.004 | 0.186 | 0.202 |
solo | 217.000 | 6282.000 | 0.000 | 0.641 | 0.055 | 0.369 | 0.484 |
notenglish | 11.000 | 6488.000 | 0.000 | 0.909 | 0.000 | 0.091 | 0.455 |
novoice | 146.000 | 6353.000 | 0.000 | 0.589 | 0.007 | 0.089 | 0.151 |
newage | 157.000 | 6342.000 | 0.000 | 0.803 | 0.000 | 0.280 | 0.592 |
synth | 294.000 | 6205.000 | 0.000 | 0.786 | 0.051 | 0.422 | 0.554 |
upbeat | 52.000 | 6447.000 | 0.000 | 0.808 | 0.038 | 0.096 | 0.442 |
slow | 1043.000 | 5456.000 | 0.000 | 0.705 | 0.199 | 0.730 | 0.516 |
deep | 12.000 | 6487.000 | 0.000 | 0.583 | 0.083 | 0.000 | 0.250 |
fiddle | 14.000 | 6485.000 | 0.000 | 0.786 | 0.000 | 0.071 | 0.214 |
orchestral | 12.000 | 6487.000 | 0.000 | 0.500 | 0.000 | 0.000 | 0.750 |
notclassical | 14.000 | 6485.000 | 0.000 | 0.500 | 0.000 | 0.000 | 0.214 |
mansinging | 46.000 | 6453.000 | 0.000 | 0.783 | 0.022 | 0.087 | 0.239 |
wind | 22.000 | 6477.000 | 0.045 | 0.636 | 0.045 | 0.000 | 0.591 |
piano | 630.000 | 5869.000 | 0.000 | 0.767 | 0.629 | 0.805 | 0.657 |
spanish | 65.000 | 6434.000 | 0.000 | 0.462 | 0.015 | 0.077 | 0.169 |
femalesinger | 30.000 | 6469.000 | 0.000 | 0.700 | 0.067 | 0.233 | 0.267 |
singing | 242.000 | 6257.000 | 0.000 | 0.777 | 0.103 | 0.529 | 0.264 |
quiet | 263.000 | 6236.000 | 0.000 | 0.719 | 0.030 | 0.707 | 0.620 |
oboe | 12.000 | 6487.000 | 0.000 | 0.167 | 0.167 | 0.000 | 0.083 |
tribal | 40.000 | 6459.000 | 0.000 | 0.425 | 0.025 | 0.200 | 0.200 |
noguitar | 46.000 | 6453.000 | 0.000 | 0.565 | 0.000 | 0.022 | 0.304 |
femalevocal | 126.000 | 6373.000 | 0.000 | 0.786 | 0.135 | 0.452 | 0.333 |
fastbeat | 33.000 | 6466.000 | 0.000 | 0.636 | 0.000 | 0.000 | 0.515 |
hiphop | 32.000 | 6467.000 | 0.000 | 0.594 | 0.219 | 0.000 | 0.312 |
instrumental | 102.000 | 6397.000 | 0.000 | 0.598 | 0.029 | 0.088 | 0.294 |
chorus | 50.000 | 6449.000 | 0.000 | 0.760 | 0.400 | 0.000 | 0.700 |
silence | 12.000 | 6487.000 | 0.000 | 0.833 | 0.167 | 0.000 | 0.333 |
duet | 18.000 | 6481.000 | 0.000 | 0.278 | 0.000 | 0.000 | 0.167 |
sax | 20.000 | 6479.000 | 0.000 | 0.200 | 0.000 | 0.050 | 0.000 |
nobeat | 14.000 | 6485.000 | 0.000 | 0.571 | 0.000 | 0.000 | 0.429 |
nopiano | 90.000 | 6409.000 | 0.033 | 0.533 | 0.000 | 0.011 | 0.089 |
novocals | 326.000 | 6173.000 | 0.000 | 0.610 | 0.003 | 0.190 | 0.206 |
pianosolo | 13.000 | 6486.000 | 0.000 | 0.692 | 0.462 | 0.000 | 0.923 |
low | 35.000 | 6464.000 | 0.000 | 0.686 | 0.143 | 0.057 | 0.371 |
weird | 120.000 | 6379.000 | 0.000 | 0.783 | 0.025 | 0.250 | 0.267 |
dance | 184.000 | 6315.000 | 0.000 | 0.864 | 0.283 | 0.234 | 0.712 |
harp | 137.000 | 6362.000 | 0.000 | 0.431 | 0.058 | 0.277 | 0.409 |
horns | 12.000 | 6487.000 | 0.000 | 0.167 | 0.083 | 0.000 | 0.083 |
funky | 66.000 | 6433.000 | 0.000 | 0.879 | 0.121 | 0.000 | 0.485 |
hardrock | 80.000 | 6419.000 | 0.000 | 0.963 | 0.100 | 0.000 | 0.950 |
bells | 36.000 | 6463.000 | 0.000 | 0.528 | 0.028 | 0.083 | 0.111 |
punk | 42.000 | 6457.000 | 0.000 | 0.786 | 0.595 | 0.000 | 0.810 |
electricguitar | 51.000 | 6448.000 | 0.000 | 0.588 | 0.059 | 0.176 | 0.588 |
techno | 827.000 | 5672.000 | 0.000 | 0.926 | 0.336 | 0.900 | 0.790 |
modern | 73.000 | 6426.000 | 0.000 | 0.699 | 0.055 | 0.082 | 0.260 |
violins | 258.000 | 6241.000 | 0.000 | 0.841 | 0.155 | 0.275 | 0.636 |
noviolin | 18.000 | 6481.000 | 0.000 | 0.611 | 0.056 | 0.056 | 0.056 |
opera | 325.000 | 6174.000 | 0.000 | 0.926 | 0.649 | 0.905 | 0.766 |
india | 22.000 | 6477.000 | 0.000 | 0.864 | 0.045 | 0.045 | 0.318 |
cello | 145.000 | 6354.000 | 0.000 | 0.717 | 0.414 | 0.510 | 0.366 |
sitar | 250.000 | 6249.000 | 0.000 | 0.868 | 0.432 | 0.624 | 0.676 |
hard | 25.000 | 6474.000 | 0.000 | 0.960 | 0.040 | 0.000 | 0.920 |
banjo | 15.000 | 6484.000 | 0.000 | 0.133 | 0.067 | 0.067 | 0.333 |
blues | 42.000 | 6457.000 | 0.000 | 0.643 | 0.119 | 0.190 | 0.048 |
man | 128.000 | 6371.000 | 0.000 | 0.805 | 0.023 | 0.375 | 0.258 |
water | 12.000 | 6487.000 | 0.000 | 0.667 | 0.000 | 0.000 | 0.750 |
femalevocals | 90.000 | 6409.000 | 0.000 | 0.700 | 0.100 | 0.267 | 0.211 |
beat | 534.000 | 5965.000 | 0.000 | 0.876 | 0.202 | 0.723 | 0.695 |
vocal | 346.000 | 6153.000 | 0.000 | 0.777 | 0.075 | 0.601 | 0.234 |
jazz | 88.000 | 6411.000 | 0.000 | 0.761 | 0.182 | 0.284 | 0.466 |
male | 316.000 | 6183.000 | 0.000 | 0.826 | 0.161 | 0.525 | 0.332 |
maleopera | 18.000 | 6481.000 | 0.000 | 0.889 | 0.278 | 0.000 | 0.889 |
drums | 663.000 | 5836.000 | 0.000 | 0.839 | 0.207 | 0.691 | 0.514 |
electronic | 578.000 | 5921.000 | 0.000 | 0.846 | 0.102 | 0.713 | 0.640 |
talking | 27.000 | 6472.000 | 0.000 | 0.704 | 0.037 | 0.000 | 0.037 |
violin | 908.000 | 5591.000 | 0.000 | 0.882 | 0.744 | 0.885 | 0.699 |
bass | 73.000 | 6426.000 | 0.000 | 0.753 | 0.041 | 0.219 | 0.438 |
notrock | 19.000 | 6480.000 | 0.000 | 0.368 | 0.000 | 0.053 | 0.105 |
string | 91.000 | 6408.000 | 0.000 | 0.736 | 0.033 | 0.121 | 0.275 |
womansinging | 32.000 | 6467.000 | 0.000 | 0.938 | 0.031 | 0.250 | 0.219 |
guitar | 1166.000 | 5333.000 | 0.000 | 0.701 | 0.359 | 0.886 | 0.522 |
medieval | 39.000 | 6460.000 | 0.000 | 0.795 | 0.077 | 0.026 | 0.410 |
clarinet | 16.000 | 6483.000 | 0.000 | 0.625 | 0.000 | 0.000 | 0.375 |
world | 14.000 | 6485.000 | 0.000 | 0.643 | 0.071 | 0.000 | 0.286 |
old | 14.000 | 6485.000 | 0.000 | 0.786 | 0.000 | 0.071 | 0.500 |
middleeastern | 17.000 | 6482.000 | 0.000 | 0.529 | 0.059 | 0.118 | 0.118 |
baroque | 81.000 | 6418.000 | 0.111 | 0.864 | 0.012 | 0.333 | 0.840 |
oriental | 50.000 | 6449.000 | 0.000 | 0.700 | 0.100 | 0.100 | 0.320 |
trumpet | 17.000 | 6482.000 | 0.000 | 0.471 | 0.059 | 0.000 | 0.000 |
irish | 49.000 | 6450.000 | 0.000 | 0.714 | 0.020 | 0.163 | 0.184 |
ambient | 419.000 | 6080.000 | 0.000 | 0.788 | 0.014 | 0.726 | 0.644 |
funk | 32.000 | 6467.000 | 0.000 | 0.875 | 0.125 | 0.000 | 0.344 |
metal | 159.000 | 6340.000 | 0.019 | 0.899 | 0.126 | 0.000 | 0.969 |
woman | 186.000 | 6313.000 | 0.000 | 0.801 | 0.091 | 0.565 | 0.457 |
dark | 36.000 | 6463.000 | 0.000 | 0.861 | 0.028 | 0.000 | 0.361 |
acoustic | 66.000 | 6433.000 | 0.015 | 0.682 | 0.182 | 0.121 | 0.409 |
light | 16.000 | 6483.000 | 0.000 | 0.750 | 0.000 | 0.125 | 0.062 |
repetitive | 24.000 | 6475.000 | 0.000 | 0.417 | 0.000 | 0.000 | 0.000 |
trance | 51.000 | 6448.000 | 0.000 | 0.804 | 0.020 | 0.098 | 0.510 |
celtic | 27.000 | 6472.000 | 0.000 | 0.741 | 0.000 | 0.111 | 0.074 |
electric | 44.000 | 6455.000 | 0.000 | 0.659 | 0.000 | 0.023 | 0.205 |
malevocals | 123.000 | 6376.000 | 0.130 | 0.821 | 0.154 | 0.276 | 0.382 |
heavy | 59.000 | 6440.000 | 0.000 | 0.864 | 0.169 | 0.000 | 0.932 |
jazzy | 68.000 | 6431.000 | 0.000 | 0.824 | 0.324 | 0.191 | 0.485 |
country | 122.000 | 6377.000 | 0.000 | 0.697 | 0.328 | 0.344 | 0.189 |
beats | 157.000 | 6342.000 | 0.006 | 0.866 | 0.140 | 0.344 | 0.707 |
loud | 313.000 | 6186.000 | 0.000 | 0.799 | 0.096 | 0.645 | 0.764 |
classical | 1544.000 | 4955.000 | 0.000 | 0.852 | 0.158 | 0.994 | 0.720 |
voices | 39.000 | 6460.000 | 0.000 | 0.615 | 0.000 | 0.077 | 0.333 |
flutes | 54.000 | 6445.000 | 0.000 | 0.815 | 0.463 | 0.000 | 0.759 |
choral | 104.000 | 6395.000 | 0.000 | 0.846 | 0.202 | 0.442 | 0.817 |
harpsichord | 263.000 | 6236.000 | 0.000 | 0.768 | 0.684 | 0.821 | 0.867 |
eastern | 80.000 | 6419.000 | 0.000 | 0.787 | 0.100 | 0.375 | 0.400 |
foreign | 51.000 | 6448.000 | 0.000 | 0.725 | 0.039 | 0.275 | 0.216 |
fast | 616.000 | 5883.000 | 0.000 | 0.701 | 0.094 | 0.646 | 0.433 |
english | 11.000 | 6488.000 | 0.000 | 0.364 | 0.000 | 0.000 | 0.091 |
spacey | 27.000 | 6472.000 | 0.000 | 0.852 | 0.000 | 0.111 | 0.444 |
electro | 87.000 | 6412.000 | 0.000 | 0.805 | 0.011 | 0.138 | 0.471 |
calm | 33.000 | 6466.000 | 0.000 | 0.545 | 0.000 | 0.061 | 0.182 |
lute | 15.000 | 6484.000 | 0.000 | 0.867 | 0.200 | 0.000 | 0.733 |
arabic | 10.000 | 6489.000 | 0.000 | 0.300 | 0.100 | 0.000 | 0.000 |
voice | 111.000 | 6388.000 | 0.000 | 0.802 | 0.063 | 0.234 | 0.171 |
vocals | 256.000 | 6243.000 | 0.000 | 0.695 | 0.109 | 0.367 | 0.234 |
rap | 41.000 | 6458.000 | 0.000 | 0.659 | 0.488 | 0.000 | 0.488 |
singer | 25.000 | 6474.000 | 0.000 | 0.800 | 0.080 | 0.040 | 0.000 |
strings | 997.000 | 5502.000 | 0.000 | 0.822 | 0.085 | 0.825 | 0.640 |
orchestra | 98.000 | 6401.000 | 0.000 | 0.704 | 0.102 | 0.245 | 0.571 |
guitars | 25.000 | 6474.000 | 0.000 | 0.400 | 0.000 | 0.000 | 0.400 |
chant | 51.000 | 6448.000 | 0.000 | 0.745 | 0.157 | 0.627 | 0.647 |
heavymetal | 43.000 | 6456.000 | 0.000 | 0.860 | 0.163 | 0.000 | 0.860 |
girl | 10.000 | 6489.000 | 0.000 | 0.900 | 0.000 | 0.000 | 0.400 |
percussion | 26.000 | 6473.000 | 0.077 | 0.692 | 0.000 | 0.077 | 0.308 |
flute | 455.000 | 6044.000 | 0.000 | 0.807 | 0.569 | 0.732 | 0.631 |
drum | 89.000 | 6410.000 | 0.000 | 0.798 | 0.056 | 0.180 | 0.281 |
classic | 235.000 | 6264.000 | 0.000 | 0.881 | 0.102 | 0.340 | 0.604 |
nosinging | 51.000 | 6448.000 | 0.000 | 0.569 | 0.000 | 0.059 | 0.059 |
chanting | 32.000 | 6467.000 | 0.000 | 0.406 | 0.031 | 0.156 | 0.438 |
folk | 48.000 | 6451.000 | 0.000 | 0.500 | 0.021 | 0.083 | 0.146 |
malesinger | 39.000 | 6460.000 | 0.000 | 0.718 | 0.282 | 0.154 | 0.256 |
mellow | 29.000 | 6470.000 | 0.000 | 0.483 | 0.000 | 0.000 | 0.069 |
indian | 313.000 | 6186.000 | 0.000 | 0.770 | 0.137 | 0.594 | 0.278 |
electronica | 39.000 | 6460.000 | 0.000 | 0.897 | 0.000 | 0.103 | 0.308 |
women | 22.000 | 6477.000 | 0.000 | 0.818 | 0.045 | 0.182 | 0.409 |
notopera | 19.000 | 6480.000 | 0.000 | 0.316 | 0.000 | 0.000 | 0.053 |
noise | 16.000 | 6483.000 | 0.000 | 0.688 | 0.062 | 0.000 | 0.438 |
soft | 248.000 | 6251.000 | 0.000 | 0.641 | 0.056 | 0.395 | 0.472 |
femaleopera | 27.000 | 6472.000 | 0.000 | 0.926 | 0.259 | 0.000 | 0.889 |
malevoice | 155.000 | 6344.000 | 0.000 | 0.806 | 0.071 | 0.297 | 0.252 |
organ | 17.000 | 6482.000 | 0.000 | 0.294 | 0.059 | 0.059 | 0.235 |
female | 320.000 | 6179.000 | 0.000 | 0.822 | 0.341 | 0.697 | 0.447 |
classicalguitar | 38.000 | 6461.000 | 0.000 | 0.789 | 0.263 | 0.000 | 0.868 |
operatic | 17.000 | 6482.000 | 0.000 | 0.941 | 0.000 | 0.000 | 0.824 |
airy | 12.000 | 6487.000 | 0.083 | 0.833 | 0.000 | 0.083 | 0.750 |
malevocal | 271.000 | 6228.000 | 0.000 | 0.856 | 0.277 | 0.465 | 0.373 |
clapping | 12.000 | 6487.000 | 0.000 | 0.417 | 0.000 | 0.000 | 0.000 |
choir | 161.000 | 6338.000 | 0.000 | 0.876 | 0.404 | 0.745 | 0.770 |
100 query subset used in Tagatune evaluation
Tag | Positive Examples | Negative Examples | LabX | Mandel | Manzagol | Marsyas | Zhi |
---|---|---|---|---|---|---|---|
sad | 5 | 95.000 | 0.200 | 0.800 | 0.200 | 0.000 | 0.600 |
nodrums | 4 | 96.000 | 0.000 | 0.750 | 0.000 | 0.000 | 0.500 |
femalevoice | 6 | 94.000 | 0.000 | 0.833 | 0.000 | 0.333 | 0.167 |
pop | 10.000 | 90.000 | 0.000 | 0.900 | 0.600 | 0.700 | 0.700 |
rock | 14.000 | 86.000 | 0.000 | 0.786 | 0.214 | 1.000 | 0.786 |
birds | 1 | 99.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 |
harpsicord | 3 | 97.000 | 0.000 | 1.000 | 0.000 | 0.000 | 1.000 |
strange | 2 | 98.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 |
novocal | 12.000 | 88.000 | 0.000 | 0.833 | 0.083 | 0.083 | 0.083 |
solo | 11.000 | 89.000 | 0.000 | 0.364 | 0.091 | 0.182 | 0.182 |
notenglish | 1 | 99.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
novoice | 4 | 96.000 | 0.000 | 0.750 | 0.000 | 0.000 | 0.000 |
newage | 12.000 | 88.000 | 0.000 | 0.667 | 0.000 | 0.250 | 0.500 |
synth | 11.000 | 89.000 | 0.000 | 0.818 | 0.091 | 0.545 | 0.364 |
upbeat | 4 | 96.000 | 0.000 | 0.750 | 0.000 | 0.000 | 0.500 |
slow | 44.000 | 56.000 | 0.000 | 0.795 | 0.159 | 0.750 | 0.364 |
deep | 2 | 98.000 | 0.000 | 0.500 | 0.000 | 0.000 | 0.000 |
fiddle | 1 | 99.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 |
orchestral | 2 | 98.000 | 0.000 | 0.500 | 0.000 | 0.000 | 1.000 |
mansinging | 2 | 98.000 | 0.000 | 1.000 | 0.000 | 0.500 | 0.500 |
wind | 1 | 99.000 | 0.000 | 1.000 | 0.000 | 0.000 | 1.000 |
piano | 9 | 91.000 | 0.000 | 0.444 | 0.111 | 0.778 | 0.222 |
femalesinger | 4 | 96.000 | 0.000 | 0.750 | 0.000 | 0.000 | 0.000 |
singing | 13.000 | 87.000 | 0.000 | 0.846 | 0.154 | 0.462 | 0.385 |
quiet | 16.000 | 84.000 | 0.000 | 0.688 | 0.062 | 0.688 | 0.500 |
tribal | 1 | 99.000 | 0.000 | 1.000 | 0.000 | 0.000 | 1.000 |
noguitar | 2 | 98.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 |
femalevocal | 13.000 | 87.000 | 0.000 | 0.692 | 0.154 | 0.538 | 0.308 |
fastbeat | 1 | 99.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
instrumental | 4 | 96.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.250 |
chorus | 3 | 97.000 | 0.000 | 0.667 | 0.000 | 0.000 | 0.667 |
silence | 1 | 99.000 | 0.000 | 1.000 | 0.000 | 0.000 | 1.000 |
sax | 2 | 98.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
nobeat | 1 | 99.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 |
nopiano | 3 | 97.000 | 0.000 | 1.000 | 0.000 | 0.333 | 0.000 |
novocals | 15.000 | 85.000 | 0.000 | 0.800 | 0.000 | 0.200 | 0.067 |
low | 5 | 95.000 | 0.000 | 0.600 | 0.000 | 0.000 | 0.000 |
weird | 3 | 97.000 | 0.000 | 0.667 | 0.000 | 0.000 | 0.000 |
dance | 4 | 96.000 | 0.000 | 1.000 | 0.250 | 0.500 | 0.750 |
harp | 3 | 97.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.333 |
horns | 3 | 97.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
funky | 1 | 99.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 |
hardrock | 4 | 96.000 | 0.000 | 1.000 | 0.000 | 0.000 | 1.000 |
bells | 2 | 98.000 | 0.000 | 0.500 | 0.500 | 0.000 | 0.000 |
punk | 4 | 96.000 | 0.000 | 1.000 | 0.750 | 0.000 | 1.000 |
techno | 12.000 | 88.000 | 0.000 | 0.750 | 0.333 | 0.667 | 0.500 |
modern | 5 | 95.000 | 0.000 | 0.600 | 0.200 | 0.200 | 0.400 |
violins | 25.000 | 75.000 | 0.000 | 0.800 | 0.160 | 0.240 | 0.560 |
opera | 6 | 94.000 | 0.000 | 0.667 | 0.167 | 1.000 | 0.667 |
cello | 21.000 | 79.000 | 0.000 | 0.810 | 0.238 | 0.333 | 0.333 |
sitar | 1 | 99.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 |
man | 4 | 96.000 | 0.000 | 0.500 | 0.250 | 0.500 | 0.000 |
femalevocals | 9 | 91.000 | 0.000 | 0.667 | 0.000 | 0.333 | 0.222 |
beat | 13.000 | 87.000 | 0.000 | 0.615 | 0.000 | 0.462 | 0.462 |
vocal | 22.000 | 78.000 | 0.000 | 0.773 | 0.000 | 0.636 | 0.227 |
jazz | 3 | 97.000 | 0.000 | 0.667 | 0.000 | 0.000 | 0.667 |
male | 10.000 | 90.000 | 0.000 | 0.700 | 0.100 | 0.600 | 0.000 |
drums | 14.000 | 86.000 | 0.000 | 0.786 | 0.143 | 0.571 | 0.429 |
electronic | 16.000 | 84.000 | 0.000 | 0.625 | 0.188 | 0.625 | 0.500 |
violin | 44.000 | 56.000 | 0.000 | 0.886 | 0.727 | 0.864 | 0.568 |
bass | 5 | 95.000 | 0.000 | 0.600 | 0.000 | 0.200 | 0.000 |
string | 12.000 | 88.000 | 0.000 | 0.750 | 0.000 | 0.000 | 0.167 |
womansinging | 3 | 97.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 |
guitar | 15.000 | 85.000 | 0.000 | 0.533 | 0.333 | 0.800 | 0.267 |
medieval | 5 | 95.000 | 0.000 | 0.800 | 0.000 | 0.000 | 0.000 |
old | 1 | 99.000 | 0.000 | 1.000 | 0.000 | 0.000 | 1.000 |
middleeastern | 1 | 99.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
baroque | 7 | 93.000 | 0.000 | 0.571 | 0.000 | 0.000 | 0.714 |
oriental | 1 | 99.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
trumpet | 2 | 98.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
irish | 1 | 99.000 | 0.000 | 1.000 | 0.000 | 0.000 | 1.000 |
ambient | 14.000 | 86.000 | 0.000 | 0.714 | 0.000 | 0.786 | 0.500 |
funk | 2 | 98.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.500 |
metal | 5 | 95.000 | 0.400 | 1.000 | 0.200 | 0.000 | 1.000 |
woman | 14.000 | 86.000 | 0.000 | 0.786 | 0.000 | 0.500 | 0.286 |
dark | 1 | 99.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
acoustic | 3 | 97.000 | 0.000 | 1.000 | 0.000 | 0.333 | 0.333 |
light | 1 | 99.000 | 0.000 | 1.000 | 0.000 | 0.000 | 1.000 |
trance | 4 | 96.000 | 0.000 | 0.750 | 0.000 | 0.000 | 0.750 |
celtic | 1 | 99.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 |
electric | 1 | 99.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 |
malevocals | 6 | 94.000 | 0.000 | 0.333 | 0.167 | 0.333 | 0.500 |
heavy | 4 | 96.000 | 0.000 | 0.500 | 0.250 | 0.000 | 0.750 |
jazzy | 3 | 97.000 | 0.000 | 0.667 | 1.000 | 0.000 | 1.000 |
country | 2 | 98.000 | 0.000 | 1.000 | 0.000 | 0.500 | 0.000 |
beats | 4 | 96.000 | 0.000 | 0.250 | 0.000 | 0.000 | 0.000 |
loud | 11.000 | 89.000 | 0.000 | 0.818 | 0.091 | 0.455 | 0.727 |
classical | 48.000 | 52.000 | 0.000 | 0.812 | 0.021 | 1.000 | 0.667 |
voices | 2 | 98.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.500 |
choral | 7 | 93.000 | 0.000 | 0.429 | 0.000 | 0.000 | 0.286 |
harpsichord | 12.000 | 88.000 | 0.000 | 0.750 | 0.417 | 0.833 | 0.917 |
eastern | 1 | 99.000 | 0.000 | 1.000 | 0.000 | 0.000 | 1.000 |
foreign | 2 | 98.000 | 0.000 | 0.500 | 0.000 | 0.000 | 0.000 |
fast | 17.000 | 83.000 | 0.000 | 0.412 | 0.000 | 0.529 | 0.294 |
english | 1 | 99.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
spacey | 2 | 98.000 | 0.000 | 1.000 | 0.000 | 0.500 | 0.500 |
electro | 4 | 96.000 | 0.000 | 0.750 | 0.000 | 0.000 | 0.500 |
calm | 6 | 94.000 | 0.000 | 0.333 | 0.000 | 0.000 | 0.000 |
voice | 10.000 | 90.000 | 0.000 | 0.900 | 0.000 | 0.300 | 0.100 |
vocals | 16.000 | 84.000 | 0.000 | 0.688 | 0.188 | 0.375 | 0.125 |
singer | 1 | 99.000 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 |
strings | 47.000 | 53.000 | 0.000 | 0.915 | 0.085 | 0.872 | 0.681 |
orchestra | 5 | 95.000 | 0.000 | 0.400 | 0.000 | 0.000 | 0.000 |
chant | 4 | 96.000 | 0.000 | 0.500 | 0.000 | 0.250 | 0.500 |
heavymetal | 2 | 98.000 | 0.000 | 1.000 | 0.000 | 0.000 | 1.000 |
girl | 2 | 98.000 | 0.000 | 0.500 | 0.000 | 0.000 | 0.500 |
flute | 8 | 92.000 | 0.000 | 0.500 | 0.375 | 0.375 | 0.125 |
drum | 3 | 97.000 | 0.000 | 0.667 | 0.000 | 0.333 | 0.000 |
classic | 24.000 | 76.000 | 0.000 | 0.958 | 0.083 | 0.292 | 0.500 |
nosinging | 3 | 97.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 |
chanting | 2 | 98.000 | 0.000 | 0.500 | 0.000 | 0.000 | 0.000 |
folk | 2 | 98.000 | 0.000 | 0.500 | 0.000 | 0.000 | 0.000 |
malesinger | 1 | 99.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 |
mellow | 5 | 95.000 | 0.000 | 0.600 | 0.000 | 0.000 | 0.000 |
indian | 3 | 97.000 | 0.000 | 0.333 | 0.000 | 0.000 | 0.333 |
electronica | 2 | 98.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.500 |
women | 3 | 97.000 | 0.000 | 0.667 | 0.000 | 0.333 | 0.333 |
soft | 21.000 | 79.000 | 0.000 | 0.429 | 0.000 | 0.286 | 0.190 |
malevoice | 9 | 91.000 | 0.000 | 0.778 | 0.000 | 0.444 | 0.111 |
organ | 1 | 99.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
female | 19.000 | 81.000 | 0.000 | 0.842 | 0.421 | 0.579 | 0.316 |
classicalguitar | 1 | 99.000 | 0.000 | 1.000 | 0.000 | 0.000 | 1.000 |
airy | 4 | 96.000 | 0.000 | 1.000 | 0.000 | 0.250 | 1.000 |
malevocal | 11.000 | 89.000 | 0.000 | 0.818 | 0.273 | 0.545 | 0.273 |
clapping | 2 | 98.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
choir | 7 | 93.000 | 0.000 | 0.571 | 0.143 | 0.286 | 0.429 |
Negative Example Accuracy
Full dataset
Tag | Positive Examples | Negative Examples | LabX | Mandel | Manzagol | Marsyas | Zhi |
---|---|---|---|---|---|---|---|
nostrings | 13.000 | 6486.000 | 1.000 | 0.496 | 1.000 | 0.994 | 0.988 |
chimes | 22.000 | 6477.000 | 0.989 | 0.779 | 0.998 | 0.995 | 0.984 |
sad | 18.000 | 6481.000 | 0.896 | 0.705 | 0.998 | 0.992 | 0.863 |
nodrums | 48.000 | 6451.000 | 1.000 | 0.569 | 0.998 | 0.984 | 0.828 |
femalevoice | 105.000 | 6394.000 | 1.000 | 0.852 | 0.976 | 0.955 | 0.960 |
horn | 7 | 6492.000 | 0.997 | 0.802 | 0.998 | 0.992 | 0.979 |
pop | 196.000 | 6303.000 | 1.000 | 0.746 | 0.890 | 0.936 | 0.848 |
rock | 601.000 | 5898.000 | 1.000 | 0.881 | 0.972 | 0.859 | 0.861 |
house | 22.000 | 6477.000 | 1.000 | 0.793 | 0.992 | 0.995 | 0.941 |
birds | 7 | 6492.000 | 1.000 | 0.922 | 0.998 | 0.992 | 0.924 |
harpsicord | 59.000 | 6440.000 | 1.000 | 0.930 | 0.986 | 0.968 | 0.865 |
strange | 22.000 | 6477.000 | 1.000 | 0.587 | 0.999 | 0.989 | 0.963 |
noflute | 35.000 | 6464.000 | 0.993 | 0.560 | 0.999 | 0.987 | 0.943 |
novocal | 263.000 | 6236.000 | 1.000 | 0.545 | 0.992 | 0.899 | 0.842 |
solo | 217.000 | 6282.000 | 0.999 | 0.837 | 0.992 | 0.908 | 0.874 |
notenglish | 11.000 | 6488.000 | 1.000 | 0.839 | 0.999 | 0.992 | 0.973 |
novoice | 146.000 | 6353.000 | 1.000 | 0.568 | 0.994 | 0.954 | 0.882 |
newage | 157.000 | 6342.000 | 1.000 | 0.758 | 0.998 | 0.952 | 0.787 |
synth | 294.000 | 6205.000 | 1.000 | 0.692 | 0.991 | 0.896 | 0.800 |
upbeat | 52.000 | 6447.000 | 1.000 | 0.692 | 0.987 | 0.987 | 0.887 |
slow | 1043.000 | 5456.000 | 1.000 | 0.709 | 0.932 | 0.713 | 0.786 |
deep | 12.000 | 6487.000 | 1.000 | 0.831 | 0.997 | 0.993 | 0.955 |
fiddle | 14.000 | 6485.000 | 1.000 | 0.817 | 0.993 | 0.991 | 0.952 |
orchestral | 12.000 | 6487.000 | 1.000 | 0.779 | 0.997 | 0.990 | 0.908 |
notclassical | 14.000 | 6485.000 | 1.000 | 0.661 | 0.998 | 0.994 | 0.947 |
mansinging | 46.000 | 6453.000 | 1.000 | 0.748 | 0.978 | 0.988 | 0.960 |
wind | 22.000 | 6477.000 | 0.997 | 0.835 | 0.990 | 0.987 | 0.878 |
piano | 630.000 | 5869.000 | 1.000 | 0.891 | 0.919 | 0.753 | 0.914 |
spanish | 65.000 | 6434.000 | 1.000 | 0.829 | 0.983 | 0.985 | 0.962 |
femalesinger | 30.000 | 6469.000 | 1.000 | 0.870 | 0.997 | 0.988 | 0.977 |
singing | 242.000 | 6257.000 | 1.000 | 0.803 | 0.974 | 0.903 | 0.956 |
quiet | 263.000 | 6236.000 | 1.000 | 0.795 | 0.996 | 0.898 | 0.821 |
oboe | 12.000 | 6487.000 | 1.000 | 0.936 | 0.979 | 0.979 | 0.919 |
tribal | 40.000 | 6459.000 | 1.000 | 0.772 | 0.998 | 0.980 | 0.977 |
noguitar | 46.000 | 6453.000 | 1.000 | 0.560 | 0.999 | 0.979 | 0.920 |
femalevocal | 126.000 | 6373.000 | 1.000 | 0.871 | 0.952 | 0.943 | 0.961 |
fastbeat | 33.000 | 6466.000 | 1.000 | 0.785 | 0.996 | 0.994 | 0.916 |
hiphop | 32.000 | 6467.000 | 1.000 | 0.907 | 0.996 | 0.996 | 0.981 |
instrumental | 102.000 | 6397.000 | 0.992 | 0.598 | 0.980 | 0.964 | 0.827 |
chorus | 50.000 | 6449.000 | 1.000 | 0.941 | 0.987 | 0.978 | 0.967 |
silence | 12.000 | 6487.000 | 0.985 | 0.901 | 0.994 | 0.993 | 0.961 |
duet | 18.000 | 6481.000 | 1.000 | 0.892 | 0.989 | 0.991 | 0.940 |
sax | 20.000 | 6479.000 | 0.977 | 0.898 | 0.990 | 0.991 | 0.963 |
nobeat | 14.000 | 6485.000 | 0.996 | 0.677 | 0.999 | 0.992 | 0.944 |
nopiano | 90.000 | 6409.000 | 0.960 | 0.572 | 0.997 | 0.969 | 0.905 |
novocals | 326.000 | 6173.000 | 1.000 | 0.543 | 0.998 | 0.891 | 0.846 |
pianosolo | 13.000 | 6486.000 | 1.000 | 0.855 | 0.987 | 0.993 | 0.932 |
low | 35.000 | 6464.000 | 1.000 | 0.817 | 0.990 | 0.986 | 0.875 |
weird | 120.000 | 6379.000 | 1.000 | 0.638 | 0.993 | 0.959 | 0.926 |
dance | 184.000 | 6315.000 | 1.000 | 0.822 | 0.960 | 0.960 | 0.893 |
harp | 137.000 | 6362.000 | 1.000 | 0.895 | 0.993 | 0.947 | 0.893 |
horns | 12.000 | 6487.000 | 0.991 | 0.937 | 0.993 | 0.990 | 0.977 |
funky | 66.000 | 6433.000 | 1.000 | 0.773 | 0.981 | 0.989 | 0.921 |
hardrock | 80.000 | 6419.000 | 1.000 | 0.893 | 0.992 | 0.980 | 0.886 |
bells | 36.000 | 6463.000 | 1.000 | 0.732 | 0.995 | 0.986 | 0.977 |
punk | 42.000 | 6457.000 | 0.971 | 0.928 | 0.962 | 0.993 | 0.924 |
electricguitar | 51.000 | 6448.000 | 1.000 | 0.822 | 0.995 | 0.985 | 0.870 |
techno | 827.000 | 5672.000 | 1.000 | 0.819 | 0.973 | 0.846 | 0.890 |
modern | 73.000 | 6426.000 | 1.000 | 0.591 | 0.985 | 0.975 | 0.903 |
violins | 258.000 | 6241.000 | 0.978 | 0.818 | 0.965 | 0.949 | 0.858 |
noviolin | 18.000 | 6481.000 | 1.000 | 0.519 | 0.999 | 0.992 | 0.968 |
opera | 325.000 | 6174.000 | 1.000 | 0.955 | 0.971 | 0.844 | 0.965 |
india | 22.000 | 6477.000 | 1.000 | 0.770 | 0.999 | 0.994 | 0.992 |
cello | 145.000 | 6354.000 | 1.000 | 0.952 | 0.962 | 0.922 | 0.968 |
sitar | 250.000 | 6249.000 | 1.000 | 0.891 | 0.981 | 0.940 | 0.898 |
hard | 25.000 | 6474.000 | 0.995 | 0.884 | 0.998 | 0.994 | 0.894 |
banjo | 15.000 | 6484.000 | 1.000 | 0.961 | 0.996 | 0.979 | 0.943 |
blues | 42.000 | 6457.000 | 1.000 | 0.923 | 0.992 | 0.987 | 0.995 |
man | 128.000 | 6371.000 | 1.000 | 0.791 | 0.983 | 0.962 | 0.972 |
water | 12.000 | 6487.000 | 1.000 | 0.911 | 0.996 | 0.992 | 0.897 |
femalevocals | 90.000 | 6409.000 | 1.000 | 0.870 | 0.974 | 0.966 | 0.975 |
beat | 534.000 | 5965.000 | 1.000 | 0.744 | 0.973 | 0.908 | 0.881 |
vocal | 346.000 | 6153.000 | 1.000 | 0.785 | 0.978 | 0.861 | 0.954 |
jazz | 88.000 | 6411.000 | 1.000 | 0.812 | 0.951 | 0.967 | 0.911 |
male | 316.000 | 6183.000 | 1.000 | 0.821 | 0.974 | 0.914 | 0.952 |
maleopera | 18.000 | 6481.000 | 1.000 | 0.966 | 0.993 | 0.991 | 0.967 |
drums | 663.000 | 5836.000 | 1.000 | 0.700 | 0.937 | 0.816 | 0.853 |
electronic | 578.000 | 5921.000 | 1.000 | 0.726 | 0.980 | 0.828 | 0.834 |
talking | 27.000 | 6472.000 | 1.000 | 0.835 | 0.999 | 0.992 | 0.989 |
violin | 908.000 | 5591.000 | 1.000 | 0.875 | 0.893 | 0.793 | 0.889 |
bass | 73.000 | 6426.000 | 1.000 | 0.697 | 0.987 | 0.973 | 0.907 |
notrock | 19.000 | 6480.000 | 1.000 | 0.494 | 0.999 | 0.994 | 0.985 |
string | 91.000 | 6408.000 | 1.000 | 0.718 | 0.985 | 0.971 | 0.854 |
womansinging | 32.000 | 6467.000 | 1.000 | 0.853 | 0.995 | 0.985 | 0.986 |
guitar | 1166.000 | 5333.000 | 1.000 | 0.847 | 0.958 | 0.649 | 0.913 |
medieval | 39.000 | 6460.000 | 1.000 | 0.791 | 0.994 | 0.981 | 0.877 |
clarinet | 16.000 | 6483.000 | 1.000 | 0.894 | 0.995 | 0.991 | 0.952 |
world | 14.000 | 6485.000 | 1.000 | 0.605 | 0.998 | 0.994 | 0.985 |
old | 14.000 | 6485.000 | 1.000 | 0.713 | 0.997 | 0.995 | 0.821 |
middleeastern | 17.000 | 6482.000 | 0.971 | 0.680 | 0.991 | 0.989 | 0.956 |
baroque | 81.000 | 6418.000 | 0.863 | 0.842 | 0.992 | 0.962 | 0.795 |
oriental | 50.000 | 6449.000 | 1.000 | 0.726 | 0.980 | 0.987 | 0.941 |
trumpet | 17.000 | 6482.000 | 0.961 | 0.848 | 0.999 | 0.993 | 0.995 |
irish | 49.000 | 6450.000 | 1.000 | 0.859 | 0.991 | 0.982 | 0.917 |
ambient | 419.000 | 6080.000 | 1.000 | 0.872 | 0.999 | 0.867 | 0.825 |
funk | 32.000 | 6467.000 | 1.000 | 0.870 | 0.991 | 0.995 | 0.947 |
metal | 159.000 | 6340.000 | 0.862 | 0.912 | 0.994 | 0.963 | 0.885 |
woman | 186.000 | 6313.000 | 1.000 | 0.892 | 0.981 | 0.925 | 0.962 |
dark | 36.000 | 6463.000 | 1.000 | 0.798 | 0.997 | 0.984 | 0.859 |
acoustic | 66.000 | 6433.000 | 0.984 | 0.844 | 0.974 | 0.988 | 0.947 |
light | 16.000 | 6483.000 | 1.000 | 0.607 | 0.998 | 0.991 | 0.956 |
repetitive | 24.000 | 6475.000 | 0.952 | 0.756 | 1.000 | 0.995 | 0.993 |
trance | 51.000 | 6448.000 | 1.000 | 0.757 | 0.993 | 0.982 | 0.884 |
celtic | 27.000 | 6472.000 | 1.000 | 0.751 | 0.996 | 0.991 | 0.967 |
electric | 44.000 | 6455.000 | 1.000 | 0.610 | 0.978 | 0.982 | 0.937 |
malevocals | 123.000 | 6376.000 | 0.945 | 0.775 | 0.973 | 0.965 | 0.881 |
heavy | 59.000 | 6440.000 | 0.936 | 0.873 | 0.991 | 0.984 | 0.875 |
jazzy | 68.000 | 6431.000 | 1.000 | 0.805 | 0.945 | 0.976 | 0.924 |
country | 122.000 | 6377.000 | 1.000 | 0.883 | 0.936 | 0.956 | 0.966 |
beats | 157.000 | 6342.000 | 0.991 | 0.718 | 0.972 | 0.962 | 0.885 |
loud | 313.000 | 6186.000 | 1.000 | 0.828 | 0.990 | 0.937 | 0.846 |
classical | 1544.000 | 4955.000 | 1.000 | 0.846 | 0.957 | 0.437 | 0.810 |
voices | 39.000 | 6460.000 | 1.000 | 0.843 | 0.996 | 0.982 | 0.969 |
flutes | 54.000 | 6445.000 | 1.000 | 0.905 | 0.986 | 0.984 | 0.959 |
choral | 104.000 | 6395.000 | 1.000 | 0.954 | 0.996 | 0.967 | 0.974 |
harpsichord | 263.000 | 6236.000 | 1.000 | 0.912 | 0.917 | 0.897 | 0.826 |
eastern | 80.000 | 6419.000 | 1.000 | 0.735 | 0.989 | 0.967 | 0.927 |
foreign | 51.000 | 6448.000 | 1.000 | 0.825 | 0.981 | 0.975 | 0.986 |
fast | 616.000 | 5883.000 | 1.000 | 0.725 | 0.987 | 0.820 | 0.838 |
english | 11.000 | 6488.000 | 1.000 | 0.768 | 0.993 | 0.992 | 0.979 |
spacey | 27.000 | 6472.000 | 1.000 | 0.857 | 0.998 | 0.987 | 0.894 |
electro | 87.000 | 6412.000 | 0.998 | 0.684 | 0.993 | 0.968 | 0.879 |
calm | 33.000 | 6466.000 | 0.989 | 0.653 | 0.994 | 0.989 | 0.925 |
lute | 15.000 | 6484.000 | 1.000 | 0.922 | 0.992 | 0.987 | 0.937 |
arabic | 10.000 | 6489.000 | 1.000 | 0.733 | 0.985 | 0.990 | 0.973 |
voice | 111.000 | 6388.000 | 1.000 | 0.707 | 0.980 | 0.951 | 0.951 |
vocals | 256.000 | 6243.000 | 1.000 | 0.745 | 0.939 | 0.907 | 0.948 |
rap | 41.000 | 6458.000 | 1.000 | 0.935 | 0.981 | 0.992 | 0.989 |
singer | 25.000 | 6474.000 | 1.000 | 0.736 | 0.983 | 0.989 | 0.989 |
strings | 997.000 | 5502.000 | 1.000 | 0.790 | 0.978 | 0.744 | 0.794 |
orchestra | 98.000 | 6401.000 | 1.000 | 0.843 | 0.988 | 0.955 | 0.865 |
guitars | 25.000 | 6474.000 | 1.000 | 0.731 | 0.996 | 0.994 | 0.921 |
chant | 51.000 | 6448.000 | 1.000 | 0.952 | 0.996 | 0.984 | 0.974 |
heavymetal | 43.000 | 6456.000 | 1.000 | 0.905 | 0.988 | 0.993 | 0.919 |
girl | 10.000 | 6489.000 | 0.978 | 0.755 | 0.999 | 0.994 | 0.972 |
percussion | 26.000 | 6473.000 | 0.865 | 0.729 | 0.997 | 0.985 | 0.964 |
flute | 455.000 | 6044.000 | 1.000 | 0.936 | 0.973 | 0.901 | 0.923 |
drum | 89.000 | 6410.000 | 1.000 | 0.688 | 0.989 | 0.971 | 0.940 |
classic | 235.000 | 6264.000 | 1.000 | 0.756 | 0.969 | 0.908 | 0.815 |
nosinging | 51.000 | 6448.000 | 1.000 | 0.529 | 0.995 | 0.984 | 0.933 |
chanting | 32.000 | 6467.000 | 1.000 | 0.948 | 0.999 | 0.988 | 0.972 |
folk | 48.000 | 6451.000 | 1.000 | 0.805 | 0.991 | 0.980 | 0.974 |
malesinger | 39.000 | 6460.000 | 1.000 | 0.748 | 0.931 | 0.985 | 0.946 |
mellow | 29.000 | 6470.000 | 0.996 | 0.650 | 0.997 | 0.992 | 0.962 |
indian | 313.000 | 6186.000 | 1.000 | 0.815 | 0.983 | 0.892 | 0.960 |
electronica | 39.000 | 6460.000 | 1.000 | 0.627 | 0.993 | 0.984 | 0.925 |
women | 22.000 | 6477.000 | 1.000 | 0.887 | 0.998 | 0.993 | 0.983 |
notopera | 19.000 | 6480.000 | 1.000 | 0.559 | 1.000 | 0.994 | 0.992 |
noise | 16.000 | 6483.000 | 1.000 | 0.793 | 0.998 | 0.984 | 0.902 |
soft | 248.000 | 6251.000 | 1.000 | 0.758 | 0.983 | 0.908 | 0.837 |
femaleopera | 27.000 | 6472.000 | 1.000 | 0.936 | 0.988 | 0.984 | 0.949 |
malevoice | 155.000 | 6344.000 | 1.000 | 0.765 | 0.970 | 0.956 | 0.950 |
organ | 17.000 | 6482.000 | 1.000 | 0.787 | 0.954 | 0.975 | 0.868 |
female | 320.000 | 6179.000 | 1.000 | 0.909 | 0.925 | 0.864 | 0.961 |
classicalguitar | 38.000 | 6461.000 | 1.000 | 0.959 | 0.978 | 0.980 | 0.932 |
operatic | 17.000 | 6482.000 | 1.000 | 0.866 | 0.999 | 0.992 | 0.943 |
airy | 12.000 | 6487.000 | 0.990 | 0.762 | 0.998 | 0.994 | 0.881 |
malevocal | 271.000 | 6228.000 | 1.000 | 0.808 | 0.935 | 0.931 | 0.911 |
clapping | 12.000 | 6487.000 | 1.000 | 0.816 | 0.999 | 0.994 | 0.998 |
choir | 161.000 | 6338.000 | 1.000 | 0.960 | 0.998 | 0.956 | 0.979 |
100 query subset used in Tagatune evaluation
Tag | Positive Examples | Negative Examples | LabX | Mandel | Manzagol | Marsyas | Zhi |
---|---|---|---|---|---|---|---|
sad | 5 | 95.000 | 0.895 | 0.589 | 1.000 | 1.000 | 0.789 |
nodrums | 4 | 96.000 | 1.000 | 0.458 | 1.000 | 0.990 | 0.781 |
femalevoice | 6 | 94.000 | 1.000 | 0.840 | 0.957 | 0.947 | 0.936 |
pop | 10.000 | 90.000 | 1.000 | 0.778 | 0.922 | 0.967 | 0.878 |
rock | 14.000 | 86.000 | 1.000 | 0.930 | 0.988 | 0.872 | 0.919 |
birds | 1 | 99.000 | 1.000 | 0.919 | 1.000 | 1.000 | 0.838 |
harpsicord | 3 | 97.000 | 1.000 | 0.907 | 0.979 | 1.000 | 0.753 |
strange | 2 | 98.000 | 1.000 | 0.561 | 1.000 | 0.980 | 0.949 |
novocal | 12.000 | 88.000 | 1.000 | 0.557 | 1.000 | 0.920 | 0.875 |
solo | 11.000 | 89.000 | 1.000 | 0.843 | 0.989 | 0.955 | 0.933 |
notenglish | 1 | 99.000 | 1.000 | 0.828 | 1.000 | 1.000 | 0.939 |
novoice | 4 | 96.000 | 1.000 | 0.635 | 1.000 | 0.979 | 0.969 |
newage | 12.000 | 88.000 | 1.000 | 0.795 | 1.000 | 1.000 | 0.795 |
synth | 11.000 | 89.000 | 1.000 | 0.831 | 1.000 | 0.989 | 0.899 |
upbeat | 4 | 96.000 | 1.000 | 0.781 | 0.990 | 1.000 | 0.927 |
slow | 44.000 | 56.000 | 1.000 | 0.786 | 0.946 | 0.768 | 0.893 |
deep | 2 | 98.000 | 1.000 | 0.806 | 1.000 | 0.990 | 0.929 |
fiddle | 1 | 99.000 | 1.000 | 0.727 | 1.000 | 0.990 | 0.929 |
orchestral | 2 | 98.000 | 1.000 | 0.704 | 1.000 | 1.000 | 0.704 |
mansinging | 2 | 98.000 | 1.000 | 0.796 | 1.000 | 0.959 | 0.969 |
wind | 1 | 99.000 | 1.000 | 0.808 | 0.990 | 0.990 | 0.828 |
piano | 9 | 91.000 | 1.000 | 0.835 | 0.890 | 0.637 | 0.956 |
femalesinger | 4 | 96.000 | 1.000 | 0.812 | 0.979 | 0.979 | 0.979 |
singing | 13.000 | 87.000 | 1.000 | 0.897 | 0.977 | 0.931 | 0.977 |
quiet | 16.000 | 84.000 | 1.000 | 0.798 | 1.000 | 0.893 | 0.881 |
tribal | 1 | 99.000 | 1.000 | 0.899 | 1.000 | 0.990 | 1.000 |
noguitar | 2 | 98.000 | 1.000 | 0.480 | 1.000 | 0.990 | 0.908 |
femalevocal | 13.000 | 87.000 | 1.000 | 0.874 | 0.931 | 0.966 | 0.977 |
fastbeat | 1 | 99.000 | 1.000 | 0.859 | 1.000 | 0.990 | 0.929 |
instrumental | 4 | 96.000 | 1.000 | 0.448 | 0.990 | 0.969 | 0.885 |
chorus | 3 | 97.000 | 1.000 | 0.959 | 1.000 | 0.969 | 0.969 |
silence | 1 | 99.000 | 0.970 | 0.919 | 1.000 | 0.990 | 0.960 |
sax | 2 | 98.000 | 0.990 | 0.908 | 0.990 | 1.000 | 0.949 |
nobeat | 1 | 99.000 | 1.000 | 0.566 | 1.000 | 0.990 | 0.889 |
nopiano | 3 | 97.000 | 0.938 | 0.412 | 1.000 | 0.979 | 0.866 |
novocals | 15.000 | 85.000 | 1.000 | 0.518 | 1.000 | 0.894 | 0.918 |
low | 5 | 95.000 | 1.000 | 0.779 | 1.000 | 0.989 | 0.874 |
weird | 3 | 97.000 | 1.000 | 0.711 | 1.000 | 0.948 | 0.959 |
dance | 4 | 96.000 | 1.000 | 0.948 | 0.969 | 0.969 | 0.948 |
harp | 3 | 97.000 | 1.000 | 0.928 | 1.000 | 0.979 | 0.969 |
horns | 3 | 97.000 | 1.000 | 0.876 | 1.000 | 0.979 | 0.979 |
funky | 1 | 99.000 | 1.000 | 0.848 | 1.000 | 0.980 | 0.980 |
hardrock | 4 | 96.000 | 1.000 | 0.927 | 1.000 | 0.990 | 0.885 |
bells | 2 | 98.000 | 1.000 | 0.776 | 1.000 | 0.990 | 1.000 |
punk | 4 | 96.000 | 0.938 | 0.948 | 1.000 | 1.000 | 0.917 |
techno | 12.000 | 88.000 | 1.000 | 0.909 | 1.000 | 0.909 | 0.920 |
modern | 5 | 95.000 | 1.000 | 0.684 | 1.000 | 0.979 | 0.958 |
violins | 25.000 | 75.000 | 0.973 | 0.787 | 0.973 | 0.960 | 0.827 |
opera | 6 | 94.000 | 1.000 | 0.957 | 0.957 | 0.851 | 0.957 |
cello | 21.000 | 79.000 | 1.000 | 0.886 | 0.962 | 0.886 | 0.975 |
sitar | 1 | 99.000 | 1.000 | 0.919 | 0.960 | 0.939 | 0.980 |
man | 4 | 96.000 | 1.000 | 0.812 | 1.000 | 0.958 | 0.990 |
femalevocals | 9 | 91.000 | 1.000 | 0.879 | 0.989 | 0.945 | 0.967 |
beat | 13.000 | 87.000 | 1.000 | 0.839 | 1.000 | 0.966 | 0.943 |
vocal | 22.000 | 78.000 | 1.000 | 0.885 | 0.974 | 0.962 | 0.974 |
jazz | 3 | 97.000 | 1.000 | 0.928 | 0.990 | 0.959 | 0.928 |
male | 10.000 | 90.000 | 1.000 | 0.833 | 0.956 | 0.933 | 0.978 |
drums | 14.000 | 86.000 | 1.000 | 0.837 | 0.977 | 0.907 | 0.942 |
electronic | 16.000 | 84.000 | 1.000 | 0.893 | 1.000 | 0.964 | 0.929 |
violin | 44.000 | 56.000 | 1.000 | 0.911 | 0.929 | 0.839 | 0.929 |
bass | 5 | 95.000 | 1.000 | 0.716 | 1.000 | 0.979 | 0.979 |
string | 12.000 | 88.000 | 1.000 | 0.625 | 1.000 | 0.966 | 0.875 |
womansinging | 3 | 97.000 | 1.000 | 0.804 | 0.969 | 0.979 | 0.990 |
guitar | 15.000 | 85.000 | 1.000 | 0.894 | 1.000 | 0.600 | 0.976 |
medieval | 5 | 95.000 | 1.000 | 0.779 | 1.000 | 1.000 | 0.874 |
old | 1 | 99.000 | 1.000 | 0.616 | 1.000 | 1.000 | 0.687 |
middleeastern | 1 | 99.000 | 0.960 | 0.596 | 1.000 | 1.000 | 0.960 |
baroque | 7 | 93.000 | 0.892 | 0.806 | 1.000 | 0.968 | 0.677 |
oriental | 1 | 99.000 | 1.000 | 0.687 | 0.980 | 1.000 | 1.000 |
trumpet | 2 | 98.000 | 0.959 | 0.837 | 1.000 | 0.990 | 1.000 |
irish | 1 | 99.000 | 1.000 | 0.798 | 0.990 | 0.990 | 0.929 |
ambient | 14.000 | 86.000 | 1.000 | 0.907 | 1.000 | 0.907 | 0.756 |
funk | 2 | 98.000 | 1.000 | 0.949 | 1.000 | 1.000 | 0.990 |
metal | 5 | 95.000 | 0.811 | 0.958 | 1.000 | 0.947 | 0.895 |
woman | 14.000 | 86.000 | 1.000 | 0.930 | 1.000 | 0.965 | 0.965 |
dark | 1 | 99.000 | 1.000 | 0.768 | 1.000 | 1.000 | 0.798 |
acoustic | 3 | 97.000 | 0.990 | 0.897 | 0.990 | 1.000 | 1.000 |
light | 1 | 99.000 | 1.000 | 0.515 | 1.000 | 0.990 | 0.980 |
trance | 4 | 96.000 | 1.000 | 0.875 | 1.000 | 0.990 | 0.938 |
celtic | 1 | 99.000 | 1.000 | 0.667 | 1.000 | 0.990 | 0.929 |
electric | 1 | 99.000 | 1.000 | 0.747 | 0.970 | 0.990 | 0.949 |
malevocals | 6 | 94.000 | 0.947 | 0.809 | 0.989 | 0.926 | 0.883 |
heavy | 4 | 96.000 | 0.969 | 0.896 | 1.000 | 0.979 | 0.896 |
jazzy | 3 | 97.000 | 1.000 | 0.897 | 0.979 | 0.959 | 0.928 |
country | 2 | 98.000 | 1.000 | 0.878 | 0.959 | 0.939 | 0.980 |
beats | 4 | 96.000 | 0.990 | 0.812 | 0.969 | 1.000 | 0.917 |
loud | 11.000 | 89.000 | 1.000 | 0.854 | 0.989 | 0.989 | 0.899 |
classical | 48.000 | 52.000 | 1.000 | 0.885 | 0.942 | 0.596 | 0.942 |
voices | 2 | 98.000 | 1.000 | 0.878 | 1.000 | 0.990 | 0.980 |
choral | 7 | 93.000 | 1.000 | 0.978 | 0.989 | 0.968 | 0.968 |
harpsichord | 12.000 | 88.000 | 1.000 | 0.909 | 0.932 | 0.943 | 0.716 |
eastern | 1 | 99.000 | 1.000 | 0.798 | 1.000 | 0.980 | 0.990 |
foreign | 2 | 98.000 | 1.000 | 0.847 | 0.980 | 0.980 | 0.980 |
fast | 17.000 | 83.000 | 1.000 | 0.855 | 0.988 | 0.916 | 0.928 |
english | 1 | 99.000 | 1.000 | 0.788 | 0.990 | 0.980 | 0.980 |
spacey | 2 | 98.000 | 1.000 | 0.847 | 1.000 | 1.000 | 0.816 |
electro | 4 | 96.000 | 1.000 | 0.802 | 0.990 | 1.000 | 0.927 |
calm | 6 | 94.000 | 0.989 | 0.596 | 0.979 | 1.000 | 0.979 |
voice | 10.000 | 90.000 | 1.000 | 0.844 | 0.978 | 0.944 | 0.967 |
vocals | 16.000 | 84.000 | 1.000 | 0.810 | 0.964 | 0.893 | 0.976 |
singer | 1 | 99.000 | 1.000 | 0.727 | 0.980 | 0.970 | 0.970 |
strings | 47.000 | 53.000 | 1.000 | 0.906 | 0.962 | 0.887 | 0.943 |
orchestra | 5 | 95.000 | 1.000 | 0.768 | 0.989 | 0.958 | 0.726 |
chant | 4 | 96.000 | 1.000 | 0.969 | 1.000 | 1.000 | 1.000 |
heavymetal | 2 | 98.000 | 1.000 | 0.929 | 0.990 | 1.000 | 0.908 |
girl | 2 | 98.000 | 0.980 | 0.786 | 1.000 | 0.980 | 0.969 |
flute | 8 | 92.000 | 1.000 | 0.935 | 0.989 | 0.913 | 0.946 |
drum | 3 | 97.000 | 1.000 | 0.794 | 1.000 | 1.000 | 0.979 |
classic | 24.000 | 76.000 | 1.000 | 0.737 | 0.987 | 0.908 | 0.789 |
nosinging | 3 | 97.000 | 1.000 | 0.402 | 1.000 | 1.000 | 0.948 |
chanting | 2 | 98.000 | 1.000 | 0.939 | 1.000 | 0.990 | 0.980 |
folk | 2 | 98.000 | 1.000 | 0.837 | 1.000 | 0.969 | 0.990 |
malesinger | 1 | 99.000 | 1.000 | 0.758 | 0.980 | 0.949 | 0.929 |
mellow | 5 | 95.000 | 0.989 | 0.726 | 1.000 | 0.989 | 0.968 |
indian | 3 | 97.000 | 1.000 | 0.907 | 0.990 | 0.876 | 0.990 |
electronica | 2 | 98.000 | 1.000 | 0.714 | 1.000 | 0.980 | 0.929 |
women | 3 | 97.000 | 1.000 | 0.876 | 1.000 | 1.000 | 0.979 |
soft | 21.000 | 79.000 | 1.000 | 0.734 | 0.975 | 0.848 | 0.899 |
malevoice | 9 | 91.000 | 1.000 | 0.835 | 0.978 | 0.956 | 0.956 |
organ | 1 | 99.000 | 1.000 | 0.737 | 0.929 | 1.000 | 0.838 |
female | 19.000 | 81.000 | 1.000 | 0.963 | 0.951 | 0.975 | 0.975 |
classicalguitar | 1 | 99.000 | 1.000 | 0.980 | 1.000 | 0.990 | 0.980 |
airy | 4 | 96.000 | 0.990 | 0.760 | 1.000 | 1.000 | 0.865 |
malevocal | 11.000 | 89.000 | 1.000 | 0.854 | 0.955 | 0.955 | 0.921 |
clapping | 2 | 98.000 | 1.000 | 0.888 | 1.000 | 0.990 | 1.000 |
choir | 7 | 93.000 | 1.000 | 0.978 | 1.000 | 0.957 | 0.978 |
Overall Summary Results (MIREX Statistical evaluation - Affinity)
Full dataset
Measure | Mandel | Manzagol | Marsyas | Zhi |
---|---|---|---|---|
Average AUC-ROC Tag | 0.821 | 0.750 | 0.831 | 0.673 |
Average AUC-ROC Clip | 0.886 | 0.810 | 0.933 | 0.748 |
Precision at 3 | 0.323 | 0.255 | 0.440 | 0.224 |
Precision at 6 | 0.245 | 0.194 | 0.314 | 0.192 |
Precision at 9 | 0.197 | 0.159 | 0.244 | 0.168 |
Precision at 12 | 0.167 | 0.136 | 0.201 | 0.146 |
Precision at 15 | 0.145 | 0.119 | 0.172 | 0.127 |
100 query subset used in Tagatune evaluation
Measure | Mandel | Manzagol | Marsyas | Zhi |
---|---|---|---|---|
Average AUC-ROC Tag | 0.646 | 0.566 | 0.636 | 0.499 |
Average AUC-ROC Clip | 0.873 | 0.766 | 0.916 | 0.689 |
Precision at 3 | 0.613 | 0.477 | 0.743 | 0.363 |
Precision at 6 | 0.508 | 0.383 | 0.590 | 0.338 |
Precision at 9 | 0.434 | 0.322 | 0.489 | 0.310 |
Precision at 12 | 0.388 | 0.283 | 0.431 | 0.278 |
Precision at 15 | 0.339 | 0.252 | 0.383 | 0.248 |
AUC-ROC Tag
Full dataset
Tag | Mandel | Manzagol | Marsyas | Zhi |
---|---|---|---|---|
nostrings | 0.552 | 0.599 | 0.663 | 0.494 |
chimes | 0.732 | 0.749 | 0.822 | 0.561 |
sad | 0.842 | 0.662 | 0.816 | 0.785 |
nodrums | 0.600 | 0.549 | 0.583 | 0.517 |
femalevoice | 0.894 | 0.731 | 0.786 | 0.648 |
horn | 0.435 | 0.683 | 0.760 | 0.560 |
pop | 0.872 | 0.819 | 0.891 | 0.687 |
rock | 0.947 | 0.926 | 0.957 | 0.879 |
house | 0.870 | 0.651 | 0.949 | 0.607 |
birds | 0.819 | 0.653 | 0.820 | 0.823 |
harpsicord | 0.946 | 0.944 | 0.961 | 0.855 |
strange | 0.801 | 0.736 | 0.744 | 0.550 |
noflute | 0.454 | 0.542 | 0.532 | 0.516 |
novocal | 0.617 | 0.538 | 0.626 | 0.519 |
solo | 0.843 | 0.746 | 0.805 | 0.686 |
notenglish | 0.861 | 0.587 | 0.822 | 0.717 |
novoice | 0.623 | 0.538 | 0.578 | 0.517 |
newage | 0.856 | 0.706 | 0.811 | 0.697 |
synth | 0.816 | 0.728 | 0.778 | 0.690 |
upbeat | 0.814 | 0.702 | 0.841 | 0.674 |
slow | 0.778 | 0.733 | 0.797 | 0.662 |
deep | 0.873 | 0.835 | 0.904 | 0.602 |
fiddle | 0.895 | 0.825 | 0.844 | 0.585 |
orchestral | 0.782 | 0.718 | 0.796 | 0.841 |
notclassical | 0.605 | 0.498 | 0.752 | 0.578 |
mansinging | 0.858 | 0.698 | 0.886 | 0.600 |
wind | 0.855 | 0.779 | 0.866 | 0.752 |
piano | 0.913 | 0.861 | 0.875 | 0.797 |
spanish | 0.762 | 0.699 | 0.759 | 0.566 |
femalesinger | 0.864 | 0.668 | 0.831 | 0.623 |
singing | 0.866 | 0.720 | 0.847 | 0.611 |
quiet | 0.854 | 0.777 | 0.906 | 0.736 |
oboe | 0.806 | 0.869 | 0.863 | 0.504 |
tribal | 0.732 | 0.737 | 0.761 | 0.588 |
noguitar | 0.611 | 0.534 | 0.579 | 0.615 |
femalevocal | 0.896 | 0.739 | 0.860 | 0.648 |
fastbeat | 0.827 | 0.855 | 0.908 | 0.728 |
hiphop | 0.901 | 0.856 | 0.912 | 0.647 |
instrumental | 0.630 | 0.561 | 0.704 | 0.563 |
chorus | 0.938 | 0.915 | 0.932 | 0.836 |
silence | 0.927 | 0.936 | 0.988 | 0.648 |
duet | 0.707 | 0.681 | 0.726 | 0.553 |
sax | 0.683 | 0.666 | 0.663 | 0.482 |
nobeat | 0.687 | 0.549 | 0.651 | 0.684 |
nopiano | 0.559 | 0.480 | 0.542 | 0.496 |
novocals | 0.613 | 0.538 | 0.640 | 0.526 |
pianosolo | 0.906 | 0.970 | 0.959 | 0.937 |
low | 0.830 | 0.814 | 0.887 | 0.629 |
weird | 0.788 | 0.573 | 0.790 | 0.599 |
dance | 0.910 | 0.850 | 0.925 | 0.813 |
harp | 0.814 | 0.846 | 0.824 | 0.650 |
horns | 0.637 | 0.659 | 0.524 | 0.530 |
funky | 0.904 | 0.860 | 0.897 | 0.703 |
hardrock | 0.976 | 0.940 | 0.969 | 0.948 |
bells | 0.654 | 0.678 | 0.799 | 0.544 |
punk | 0.939 | 0.958 | 0.958 | 0.879 |
electricguitar | 0.834 | 0.790 | 0.836 | 0.734 |
techno | 0.942 | 0.899 | 0.940 | 0.856 |
modern | 0.725 | 0.642 | 0.772 | 0.582 |
violins | 0.890 | 0.848 | 0.873 | 0.753 |
noviolin | 0.521 | 0.637 | 0.697 | 0.512 |
opera | 0.972 | 0.962 | 0.957 | 0.870 |
india | 0.907 | 0.837 | 0.836 | 0.655 |
cello | 0.930 | 0.882 | 0.900 | 0.669 |
sitar | 0.940 | 0.902 | 0.896 | 0.793 |
hard | 0.966 | 0.910 | 0.960 | 0.932 |
banjo | 0.676 | 0.689 | 0.799 | 0.638 |
blues | 0.909 | 0.894 | 0.894 | 0.521 |
man | 0.886 | 0.739 | 0.883 | 0.616 |
water | 0.896 | 0.634 | 0.956 | 0.851 |
femalevocals | 0.891 | 0.780 | 0.777 | 0.593 |
beat | 0.890 | 0.873 | 0.915 | 0.799 |
vocal | 0.855 | 0.729 | 0.825 | 0.595 |
jazz | 0.878 | 0.782 | 0.847 | 0.691 |
male | 0.897 | 0.781 | 0.882 | 0.644 |
maleopera | 0.982 | 0.923 | 0.992 | 0.935 |
drums | 0.836 | 0.801 | 0.841 | 0.686 |
electronic | 0.860 | 0.797 | 0.847 | 0.750 |
talking | 0.875 | 0.718 | 0.933 | 0.513 |
violin | 0.943 | 0.899 | 0.910 | 0.807 |
bass | 0.804 | 0.779 | 0.827 | 0.677 |
notrock | 0.510 | 0.568 | 0.603 | 0.546 |
string | 0.795 | 0.682 | 0.768 | 0.567 |
womansinging | 0.941 | 0.716 | 0.900 | 0.603 |
guitar | 0.870 | 0.838 | 0.879 | 0.721 |
medieval | 0.845 | 0.771 | 0.734 | 0.642 |
clarinet | 0.886 | 0.753 | 0.920 | 0.666 |
world | 0.600 | 0.565 | 0.786 | 0.636 |
old | 0.744 | 0.644 | 0.720 | 0.679 |
middleeastern | 0.668 | 0.604 | 0.693 | 0.536 |
baroque | 0.925 | 0.847 | 0.877 | 0.840 |
oriental | 0.792 | 0.798 | 0.826 | 0.628 |
trumpet | 0.785 | 0.661 | 0.688 | 0.498 |
irish | 0.861 | 0.792 | 0.783 | 0.551 |
ambient | 0.916 | 0.761 | 0.873 | 0.761 |
funk | 0.933 | 0.888 | 0.939 | 0.643 |
metal | 0.971 | 0.954 | 0.974 | 0.962 |
woman | 0.927 | 0.815 | 0.872 | 0.710 |
dark | 0.897 | 0.794 | 0.874 | 0.613 |
acoustic | 0.839 | 0.834 | 0.908 | 0.678 |
light | 0.737 | 0.654 | 0.793 | 0.510 |
repetitive | 0.655 | 0.497 | 0.865 | 0.496 |
trance | 0.861 | 0.699 | 0.877 | 0.702 |
celtic | 0.826 | 0.758 | 0.776 | 0.520 |
electric | 0.709 | 0.527 | 0.753 | 0.572 |
malevocals | 0.869 | 0.774 | 0.862 | 0.635 |
heavy | 0.955 | 0.911 | 0.969 | 0.932 |
jazzy | 0.881 | 0.801 | 0.849 | 0.709 |
country | 0.876 | 0.771 | 0.883 | 0.577 |
beats | 0.867 | 0.814 | 0.909 | 0.805 |
loud | 0.893 | 0.817 | 0.927 | 0.831 |
classical | 0.920 | 0.849 | 0.885 | 0.778 |
voices | 0.803 | 0.691 | 0.806 | 0.651 |
flutes | 0.943 | 0.906 | 0.939 | 0.865 |
choral | 0.966 | 0.935 | 0.957 | 0.900 |
harpsichord | 0.940 | 0.911 | 0.940 | 0.891 |
eastern | 0.845 | 0.810 | 0.842 | 0.667 |
foreign | 0.845 | 0.644 | 0.873 | 0.600 |
fast | 0.802 | 0.758 | 0.815 | 0.642 |
english | 0.664 | 0.519 | 0.811 | 0.536 |
spacey | 0.907 | 0.759 | 0.886 | 0.680 |
electro | 0.821 | 0.695 | 0.838 | 0.675 |
calm | 0.668 | 0.601 | 0.820 | 0.554 |
lute | 0.955 | 0.936 | 0.934 | 0.843 |
arabic | 0.534 | 0.656 | 0.682 | 0.487 |
voice | 0.819 | 0.620 | 0.780 | 0.562 |
vocals | 0.812 | 0.676 | 0.791 | 0.591 |
rap | 0.934 | 0.925 | 0.946 | 0.739 |
singer | 0.811 | 0.642 | 0.838 | 0.494 |
strings | 0.879 | 0.832 | 0.857 | 0.732 |
orchestra | 0.883 | 0.797 | 0.867 | 0.725 |
guitars | 0.659 | 0.690 | 0.817 | 0.664 |
chant | 0.912 | 0.851 | 0.952 | 0.815 |
heavymetal | 0.953 | 0.931 | 0.972 | 0.904 |
girl | 0.919 | 0.701 | 0.806 | 0.685 |
percussion | 0.778 | 0.850 | 0.850 | 0.638 |
flute | 0.953 | 0.907 | 0.907 | 0.789 |
drum | 0.814 | 0.735 | 0.821 | 0.611 |
classic | 0.872 | 0.797 | 0.840 | 0.711 |
nosinging | 0.566 | 0.526 | 0.657 | 0.495 |
chanting | 0.891 | 0.657 | 0.878 | 0.706 |
folk | 0.758 | 0.797 | 0.774 | 0.560 |
malesinger | 0.835 | 0.742 | 0.883 | 0.603 |
mellow | 0.647 | 0.632 | 0.787 | 0.515 |
indian | 0.886 | 0.794 | 0.831 | 0.621 |
electronica | 0.802 | 0.685 | 0.823 | 0.621 |
women | 0.947 | 0.812 | 0.878 | 0.697 |
notopera | 0.510 | 0.482 | 0.550 | 0.522 |
noise | 0.817 | 0.737 | 0.759 | 0.676 |
soft | 0.773 | 0.718 | 0.809 | 0.662 |
femaleopera | 0.977 | 0.960 | 0.934 | 0.926 |
malevoice | 0.870 | 0.660 | 0.869 | 0.602 |
organ | 0.640 | 0.457 | 0.597 | 0.557 |
female | 0.928 | 0.813 | 0.851 | 0.706 |
classicalguitar | 0.963 | 0.949 | 0.926 | 0.909 |
operatic | 0.948 | 0.862 | 0.913 | 0.892 |
airy | 0.885 | 0.696 | 0.911 | 0.843 |
malevocal | 0.895 | 0.761 | 0.892 | 0.645 |
clapping | 0.798 | 0.575 | 0.628 | 0.499 |
choir | 0.979 | 0.962 | 0.962 | 0.880 |
100 query subset used in Tagatune evaluation
Tag | Mandel | Manzagol | Marsyas | Zhi |
---|---|---|---|---|
nostrings | 0.000 | 0.000 | 0.000 | 0.000 |
chimes | 0.000 | 0.000 | 0.000 | 0.000 |
sad | 0.762 | 0.760 | 0.672 | 0.703 |
nodrums | 0.609 | 0.320 | 0.622 | 0.535 |
femalevoice | 0.885 | 0.704 | 0.910 | 0.556 |
horn | 0.000 | 0.000 | 0.000 | 0.000 |
pop | 0.931 | 0.892 | 0.969 | 0.752 |
rock | 0.966 | 0.934 | 0.968 | 0.872 |
house | 0.000 | 0.000 | 0.000 | 0.000 |
birds | 0.939 | 0.980 | 0.606 | 0.424 |
harpsicord | 0.935 | 0.887 | 0.914 | 0.880 |
strange | 0.791 | 0.449 | 0.816 | 0.480 |
noflute | 0.000 | 0.000 | 0.000 | 0.000 |
novocal | 0.696 | 0.606 | 0.634 | 0.481 |
solo | 0.796 | 0.612 | 0.776 | 0.568 |
notenglish | 0.000 | 0.313 | 0.596 | 0.475 |
novoice | 0.784 | 0.604 | 0.703 | 0.490 |
newage | 0.813 | 0.665 | 0.863 | 0.633 |
synth | 0.921 | 0.774 | 0.860 | 0.645 |
upbeat | 0.888 | 0.789 | 0.828 | 0.724 |
slow | 0.856 | 0.679 | 0.848 | 0.637 |
deep | 0.755 | 0.959 | 0.852 | 0.469 |
fiddle | 0.818 | 0.768 | 0.818 | 0.470 |
orchestral | 0.709 | 0.796 | 0.806 | 0.908 |
notclassical | 0.000 | 0.000 | 0.000 | 0.000 |
mansinging | 0.980 | 0.816 | 0.969 | 0.745 |
wind | 0.939 | 0.747 | 0.980 | 0.970 |
piano | 0.819 | 0.568 | 0.683 | 0.531 |
spanish | 0.000 | 0.000 | 0.000 | 0.000 |
femalesinger | 0.794 | 0.581 | 0.839 | 0.495 |
singing | 0.939 | 0.688 | 0.846 | 0.641 |
quiet | 0.844 | 0.735 | 0.924 | 0.659 |
oboe | 0.000 | 0.000 | 0.000 | 0.000 |
tribal | 0.980 | 1.000 | 0.980 | 0.500 |
noguitar | 0.699 | 0.480 | 0.189 | 0.459 |
femalevocal | 0.836 | 0.753 | 0.925 | 0.648 |
fastbeat | 0.737 | 0.485 | 0.838 | 0.470 |
hiphop | 0.000 | 0.000 | 0.000 | 0.000 |
instrumental | 0.846 | 0.622 | 0.643 | 0.578 |
chorus | 0.900 | 0.852 | 0.969 | 0.820 |
silence | 0.949 | 0.960 | 0.929 | 0.970 |
duet | 0.000 | 0.000 | 0.000 | 0.000 |
sax | 0.122 | 0.592 | 0.122 | 0.480 |
nobeat | 0.778 | 0.141 | 0.828 | 0.449 |
nopiano | 0.773 | 0.368 | 0.560 | 0.438 |
novocals | 0.632 | 0.589 | 0.707 | 0.498 |
pianosolo | 0.000 | 0.000 | 0.000 | 0.000 |
low | 0.737 | 0.667 | 0.737 | 0.442 |
weird | 0.746 | 0.333 | 0.773 | 0.485 |
dance | 0.974 | 0.906 | 0.979 | 0.852 |
harp | 0.663 | 0.746 | 0.928 | 0.653 |
horns | 0.588 | 0.529 | 0.282 | 0.495 |
funky | 1.000 | 0.980 | 0.939 | 0.495 |
hardrock | 1.000 | 0.943 | 1.000 | 0.992 |
bells | 0.536 | 0.857 | 0.393 | 0.500 |
punk | 0.987 | 0.997 | 0.992 | 0.982 |
electricguitar | 0.000 | 0.000 | 0.000 | 0.000 |
techno | 0.922 | 0.852 | 0.891 | 0.713 |
modern | 0.796 | 0.931 | 0.813 | 0.684 |
violins | 0.890 | 0.864 | 0.890 | 0.676 |
noviolin | 0.000 | 0.000 | 0.000 | 0.000 |
opera | 0.846 | 0.911 | 0.943 | 0.821 |
india | 0.000 | 0.000 | 0.000 | 0.000 |
cello | 0.914 | 0.838 | 0.866 | 0.662 |
sitar | 0.859 | 0.586 | 0.818 | 1.000 |
hard | 0.000 | 0.000 | 0.000 | 0.000 |
banjo | 0.000 | 0.000 | 0.000 | 0.000 |
blues | 0.000 | 0.000 | 0.000 | 0.000 |
man | 0.862 | 0.815 | 0.880 | 0.500 |
water | 0.000 | 0.000 | 0.000 | 0.000 |
femalevocals | 0.834 | 0.803 | 0.823 | 0.599 |
beat | 0.877 | 0.887 | 0.947 | 0.660 |
vocal | 0.904 | 0.722 | 0.859 | 0.578 |
jazz | 0.907 | 0.790 | 0.883 | 0.799 |
male | 0.909 | 0.723 | 0.926 | 0.494 |
maleopera | 0.000 | 0.000 | 0.000 | 0.000 |
drums | 0.894 | 0.868 | 0.866 | 0.686 |
electronic | 0.890 | 0.794 | 0.846 | 0.689 |
talking | 0.000 | 0.000 | 0.000 | 0.000 |
violin | 0.958 | 0.903 | 0.932 | 0.740 |
bass | 0.758 | 0.731 | 0.792 | 0.495 |
notrock | 0.000 | 0.000 | 0.000 | 0.000 |
string | 0.809 | 0.668 | 0.747 | 0.526 |
womansinging | 0.911 | 0.897 | 0.914 | 0.500 |
guitar | 0.864 | 0.800 | 0.807 | 0.587 |
medieval | 0.745 | 0.752 | 0.501 | 0.442 |
clarinet | 0.000 | 0.000 | 0.000 | 0.000 |
world | 0.000 | 0.000 | 0.000 | 0.000 |
old | 0.667 | 0.586 | 0.475 | 0.869 |
middleeastern | 0.152 | 0.101 | 0.162 | 0.485 |
baroque | 0.829 | 0.631 | 0.747 | 0.682 |
oriental | 0.545 | 0.232 | 0.556 | 0.500 |
trumpet | 0.643 | 0.648 | 0.372 | 0.500 |
irish | 0.949 | 0.838 | 0.697 | 0.939 |
ambient | 0.898 | 0.649 | 0.895 | 0.678 |
funk | 0.995 | 0.939 | 0.974 | 0.495 |
metal | 0.998 | 1.000 | 0.996 | 0.983 |
woman | 0.857 | 0.841 | 0.856 | 0.588 |
dark | 0.657 | 0.354 | 0.596 | 0.404 |
acoustic | 0.948 | 0.983 | 0.997 | 0.500 |
light | 0.929 | 0.677 | 0.697 | 1.000 |
repetitive | 0.000 | 0.000 | 0.000 | 0.000 |
trance | 0.909 | 0.867 | 0.990 | 0.845 |
celtic | 1.000 | 0.919 | 0.909 | 0.470 |
electric | 0.899 | 1.000 | 0.798 | 0.480 |
malevocals | 0.814 | 0.652 | 0.881 | 0.695 |
heavy | 0.943 | 0.932 | 0.943 | 0.855 |
jazzy | 0.948 | 0.983 | 0.904 | 0.797 |
country | 0.923 | 0.556 | 0.918 | 0.495 |
beats | 0.792 | 0.698 | 0.776 | 0.464 |
loud | 0.944 | 0.876 | 0.941 | 0.833 |
classical | 0.945 | 0.802 | 0.898 | 0.787 |
voices | 0.964 | 0.842 | 0.959 | 0.747 |
flutes | 0.000 | 0.000 | 0.000 | 0.000 |
choral | 0.862 | 0.647 | 0.846 | 0.631 |
harpsichord | 0.926 | 0.747 | 0.929 | 0.897 |
eastern | 0.909 | 1.000 | 0.687 | 1.000 |
foreign | 0.449 | 0.347 | 0.796 | 0.495 |
fast | 0.780 | 0.670 | 0.778 | 0.617 |
english | 0.364 | 0.798 | 0.838 | 0.495 |
spacey | 0.959 | 0.724 | 0.990 | 0.681 |
electro | 0.844 | 0.651 | 0.927 | 0.590 |
calm | 0.441 | 0.651 | 0.784 | 0.495 |
lute | 0.000 | 0.000 | 0.000 | 0.000 |
arabic | 0.000 | 0.000 | 0.000 | 0.000 |
voice | 0.933 | 0.700 | 0.802 | 0.540 |
vocals | 0.846 | 0.649 | 0.775 | 0.519 |
rap | 0.000 | 0.000 | 0.000 | 0.000 |
singer | 0.909 | 1.000 | 0.768 | 0.490 |
strings | 0.972 | 0.902 | 0.933 | 0.814 |
orchestra | 0.813 | 0.823 | 0.764 | 0.368 |
guitars | 0.000 | 0.000 | 0.000 | 0.000 |
chant | 0.815 | 0.721 | 0.974 | 0.625 |
heavymetal | 0.995 | 0.867 | 0.990 | 0.995 |
girl | 0.872 | 0.699 | 0.923 | 0.735 |
percussion | 0.000 | 0.000 | 0.000 | 0.000 |
flute | 0.807 | 0.802 | 0.837 | 0.542 |
drum | 0.869 | 0.869 | 0.955 | 0.495 |
classic | 0.880 | 0.776 | 0.815 | 0.635 |
nosinging | 0.729 | 0.347 | 0.677 | 0.479 |
chanting | 0.719 | 0.444 | 0.969 | 0.495 |
folk | 0.673 | 0.867 | 0.536 | 0.500 |
malesinger | 0.778 | 0.949 | 0.990 | 0.470 |
mellow | 0.629 | 0.707 | 0.693 | 0.489 |
indian | 0.801 | 0.419 | 0.481 | 0.667 |
electronica | 0.852 | 0.526 | 0.913 | 0.735 |
women | 0.928 | 0.739 | 0.845 | 0.660 |
notopera | 0.000 | 0.000 | 0.000 | 0.000 |
noise | 0.000 | 0.000 | 0.000 | 0.000 |
soft | 0.661 | 0.667 | 0.761 | 0.548 |
femaleopera | 0.000 | 0.000 | 0.000 | 0.000 |
malevoice | 0.906 | 0.618 | 0.882 | 0.478 |
organ | 0.707 | 0.101 | 0.525 | 0.424 |
female | 0.910 | 0.712 | 0.827 | 0.620 |
classicalguitar | 1.000 | 0.970 | 1.000 | 0.990 |
operatic | 0.000 | 0.000 | 0.000 | 0.000 |
airy | 0.995 | 0.693 | 0.982 | 0.992 |
malevocal | 0.883 | 0.700 | 0.916 | 0.600 |
clapping | 0.867 | 0.270 | 0.949 | 0.500 |
choir | 0.892 | 0.688 | 0.848 | 0.710 |
Select Friedman's Test Results
Tag F-measure (Binary) Friedman Test
The following table and plot show the results of Friedman's ANOVA with Tukey-Kramer multiple comparisons computed over the F-measure for each tag in the test, averaged over all folds.
Full dataset
TeamID | TeamID | Lowerbound | Mean | Upperbound | Significance |
---|---|---|---|---|---|
Zhi | Mandel | -0.196 | 0.275 | 0.746 | FALSE |
Zhi | Marsyas | -0.102 | 0.369 | 0.840 | FALSE |
Zhi | Manzagol | 0.657 | 1.128 | 1.599 | TRUE |
Zhi | LabX | 2.007 | 2.478 | 2.949 | TRUE |
Mandel | Marsyas | -0.377 | 0.094 | 0.565 | FALSE |
Mandel | Manzagol | 0.382 | 0.853 | 1.324 | TRUE |
Mandel | LabX | 1.732 | 2.203 | 2.674 | TRUE |
Marsyas | Manzagol | 0.288 | 0.759 | 1.230 | TRUE |
Marsyas | LabX | 1.639 | 2.109 | 2.580 | TRUE |
Manzagol | LabX | 0.879 | 1.350 | 1.821 | TRUE |
100 query subset used in Tagatune evaluation
TeamID | TeamID | Lowerbound | Mean | Upperbound | Significance |
---|---|---|---|---|---|
Mandel | Zhi | 0.383 | 0.853 | 1.323 | TRUE |
Mandel | Marsyas | 0.609 | 1.079 | 1.550 | TRUE |
Mandel | Manzagol | 1.284 | 1.754 | 2.224 | TRUE |
Mandel | LabX | 1.895 | 2.365 | 2.835 | TRUE |
Zhi | Marsyas | -0.244 | 0.226 | 0.696 | FALSE |
Zhi | Manzagol | 0.431 | 0.901 | 1.371 | TRUE |
Zhi | LabX | 1.042 | 1.512 | 1.982 | TRUE |
Marsyas | Manzagol | 0.204 | 0.675 | 1.145 | TRUE |
Marsyas | LabX | 0.816 | 1.286 | 1.756 | TRUE |
Manzagol | LabX | 0.141 | 0.611 | 1.081 | TRUE |
Per Track F-measure (Binary) Friedman Test
The following table and plot show the results of Friedman's ANOVA with Tukey-Kramer multiple comparisons computed over the F-measure for each track in the test, averaged over all folds.
Full dataset
TeamID | TeamID | Lowerbound | Mean | Upperbound | Significance |
---|---|---|---|---|---|
Marsyas | Manzagol | 1.052 | 1.124 | 1.197 | TRUE |
Marsyas | Zhi | 0.829 | 0.901 | 0.973 | TRUE |
Marsyas | Mandel | 1.293 | 1.365 | 1.438 | TRUE |
Marsyas | LabX | 2.795 | 2.867 | 2.939 | TRUE |
Manzagol | Zhi | -0.296 | -0.223 | -0.151 | TRUE |
Manzagol | Mandel | 0.168 | 0.241 | 0.313 | TRUE |
Manzagol | LabX | 1.670 | 1.743 | 1.815 | TRUE |
Zhi | Mandel | 0.392 | 0.464 | 0.537 | TRUE |
Zhi | LabX | 1.894 | 1.966 | 2.038 | TRUE |
Mandel | LabX | 1.429 | 1.502 | 1.574 | TRUE |
100 query subset used in Tagatune evaluation
TeamID | TeamID | Lowerbound | Mean | Upperbound | Significance |
---|---|---|---|---|---|
Marsyas | Zhi | 0.381 | 0.985 | 1.589 | TRUE |
Marsyas | Mandel | 0.656 | 1.260 | 1.864 | TRUE |
Marsyas | Manzagol | 1.261 | 1.865 | 2.469 | TRUE |
Marsyas | LabX | 2.736 | 3.340 | 3.944 | TRUE |
Zhi | Mandel | -0.329 | 0.275 | 0.879 | FALSE |
Zhi | Manzagol | 0.276 | 0.880 | 1.484 | TRUE |
Zhi | LabX | 1.751 | 2.355 | 2.959 | TRUE |
Mandel | Manzagol | 0.001 | 0.605 | 1.209 | TRUE |
Mandel | LabX | 1.476 | 2.080 | 2.684 | TRUE |
Manzagol | LabX | 0.871 | 1.475 | 2.079 | TRUE |
Tag AUC-ROC (Affinity) Friedman Test
The following table and plot show the results of Friedman's ANOVA with Tukey-Kramer multiple comparisons computed over the Area Under the ROC curve (AUC-ROC) for each tag in the test, averaged over all folds.
Full dataset
TeamID | TeamID | Lowerbound | Mean | Upperbound | Significance |
---|---|---|---|---|---|
Marsyas | Mandel | -0.283 | 0.087 | 0.458 | FALSE |
Marsyas | Manzagol | 0.935 | 1.306 | 1.677 | TRUE |
Marsyas | Zhi | 1.735 | 2.106 | 2.477 | TRUE |
Mandel | Manzagol | 0.848 | 1.219 | 1.590 | TRUE |
Mandel | Zhi | 1.648 | 2.019 | 2.390 | TRUE |
Manzagol | Zhi | 0.429 | 0.800 | 1.171 | TRUE |
100 query subset used in Tagatune evaluation
TeamID | TeamID | Lowerbound | Mean | Upperbound | Significance |
---|---|---|---|---|---|
Mandel | Marsyas | -0.206 | 0.122 | 0.450 | FALSE |
Mandel | Manzagol | 0.522 | 0.850 | 1.178 | TRUE |
Mandel | Zhi | 1.025 | 1.353 | 1.681 | TRUE |
Marsyas | Manzagol | 0.400 | 0.728 | 1.056 | TRUE |
Marsyas | Zhi | 0.903 | 1.231 | 1.559 | TRUE |
Manzagol | Zhi | 0.175 | 0.503 | 0.831 | TRUE |
Per Track AUC-ROC (Affinity) Friedman Test
The following table and plot show the results of Friedman's ANOVA with Tukey-Kramer multiple comparisons computed over the Area Under the ROC curve (AUC-ROC) for each track/clip in the test, averaged over all folds.
Full dataset
TeamID | TeamID | Lowerbound | Mean | Upperbound | Significance |
---|---|---|---|---|---|
Marsyas | Mandel | 0.523 | 0.580 | 0.638 | TRUE |
Marsyas | Manzagol | 1.184 | 1.242 | 1.299 | TRUE |
Marsyas | Zhi | 1.611 | 1.668 | 1.726 | TRUE |
Mandel | Manzagol | 0.604 | 0.661 | 0.719 | TRUE |
Mandel | Zhi | 1.030 | 1.088 | 1.145 | TRUE |
Manzagol | Zhi | 0.369 | 0.426 | 0.484 | TRUE |
100 query subset used in Tagatune evaluation
TeamID | TeamID | Lowerbound | Mean | Upperbound | Significance |
---|---|---|---|---|---|
Marsyas | Mandel | 0.071 | 0.540 | 1.009 | TRUE |
Marsyas | Manzagol | 1.191 | 1.660 | 2.129 | TRUE |
Marsyas | Zhi | 1.731 | 2.200 | 2.669 | TRUE |
Mandel | Manzagol | 0.651 | 1.120 | 1.589 | TRUE |
Mandel | Zhi | 1.191 | 1.660 | 2.129 | TRUE |
Manzagol | Zhi | 0.071 | 0.540 | 1.009 | TRUE |
Assorted Results Files for Download
MIREX Statistical Evaluation Results
Full dataset
affinity_tag_fold_AUC_ROC.csv
affinity_clip_AUC_ROC.csv
binary_per_fold_Accuracy.csv
binary_per_fold_Fmeasure.csv
binary_per_fold_negative_example_Accuracy.csv
binary_per_fold_per_track_Accuracy.csv
binary_per_fold_per_track_Fmeasure.csv
binary_per_fold_per_track_negative_example_Accuracy.csv
binary_per_fold_per_track_positive_example_Accuracy.csv
binary_per_fold_positive_example_Accuracy.csv
affinity_clip_Precision_at_3.csv
affinity_clip_Precision_at_6.csv
affinity_clip_Precision_at_9.csv
affinity_clip_Precision_at_12.csv
affinity_clip_Precision_at_15.csv
100 query subset used in Tagatune evaluation
affinity_tag_fold_AUC_ROC.csv
affinity_clip_AUC_ROC.csv
binary_per_fold_Accuracy.csv
binary_per_fold_Fmeasure.csv
binary_per_fold_negative_example_Accuracy.csv
binary_per_fold_per_track_Accuracy.csv
binary_per_fold_per_track_Fmeasure.csv
binary_per_fold_per_track_negative_example_Accuracy.csv
binary_per_fold_per_track_positive_example_Accuracy.csv
binary_per_fold_positive_example_Accuracy.csv
affinity_clip_Precision_at_3.csv
affinity_clip_Precision_at_6.csv
affinity_clip_Precision_at_9.csv
affinity_clip_Precision_at_12.csv
affinity_clip_Precision_at_15.csv
Friedman's Tests Results
Full dataset
affinity.AUC_ROC_TAG.friedman.tukeyKramerHSD.csv
affinity.AUC_ROC_TAG.friedman.tukeyKramerHSD.png
affinity.AUC_ROC_TRACK.friedman.tukeyKramerHSD.csv
affinity.AUC_ROC_TRACK.friedman.tukeyKramerHSD.png
affinity.PrecisionAt3.friedman.tukeyKramerHSD.csv
affinity.PrecisionAt3.friedman.tukeyKramerHSD.png
affinity.PrecisionAt6.friedman.tukeyKramerHSD.csv
affinity.PrecisionAt6.friedman.tukeyKramerHSD.png
affinity.PrecisionAt9.friedman.tukeyKramerHSD.csv
affinity.PrecisionAt9.friedman.tukeyKramerHSD.png
affinity.PrecisionAt12.friedman.tukeyKramerHSD.csv
affinity.PrecisionAt12.friedman.tukeyKramerHSD.png
affinity.PrecisionAt15.friedman.tukeyKramerHSD.csv
affinity.PrecisionAt15.friedman.tukeyKramerHSD.png
binary_Accuracy.friedman.tukeyKramerHSD.csv
binary_Accuracy.friedman.tukeyKramerHSD.png
binary_FMeasure.friedman.tukeyKramerHSD.csv
binary_FMeasure.friedman.tukeyKramerHSD.png
binary_FMeasure_per_track.friedman.tukeyKramerHSD.csv
binary_FMeasure_per_track.friedman.tukeyKramerHSD.png
100 query subset used in Tagatune evaluation
affinity.AUC_ROC_TAG.friedman.tukeyKramerHSD.csv
affinity.AUC_ROC_TAG.friedman.tukeyKramerHSD.png
affinity.AUC_ROC_TRACK.friedman.tukeyKramerHSD.csv
affinity.AUC_ROC_TRACK.friedman.tukeyKramerHSD.png
affinity.PrecisionAt3.friedman.tukeyKramerHSD.csv
affinity.PrecisionAt3.friedman.tukeyKramerHSD.png
affinity.PrecisionAt6.friedman.tukeyKramerHSD.csv
affinity.PrecisionAt6.friedman.tukeyKramerHSD.png
affinity.PrecisionAt9.friedman.tukeyKramerHSD.csv
affinity.PrecisionAt9.friedman.tukeyKramerHSD.png
affinity.PrecisionAt12.friedman.tukeyKramerHSD.csv
affinity.PrecisionAt12.friedman.tukeyKramerHSD.png
affinity.PrecisionAt15.friedman.tukeyKramerHSD.csv
affinity.PrecisionAt15.friedman.tukeyKramerHSD.png
binary_Accuracy.friedman.tukeyKramerHSD.csv
binary_Accuracy.friedman.tukeyKramerHSD.png
binary_FMeasure.friedman.tukeyKramerHSD.csv
binary_FMeasure.friedman.tukeyKramerHSD.png
binary_FMeasure_per_track.friedman.tukeyKramerHSD.csv
binary_FMeasure_per_track.friedman.tukeyKramerHSD.png
Results By Algorithm
(.tgz format)
Full dataset
LabX = Anonymous
Mandel = Michael Mandel
Manzagol = Pierre-Antoine Manzagol
Marsyas = George Tzanetakis
Zhi = Zhi-Sheng Chen
100 query subset used in Tagatune evaluation
LabX = Anonymous
Mandel = Michael Mandel
Manzagol = Pierre-Antoine Manzagol
Marsyas = George Tzanetakis
Zhi = Zhi-Sheng Chen