Difference between revisions of "2008:Audio Classical Composer Identification Results"

From MIREX Wiki
(Introduction)
(Team ID)
Line 29: Line 29:
 
'''LRPPI3''' = [https://www.music-ir.org/mirex/2008/abs/.pdf T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 3]<br />
 
'''LRPPI3''' = [https://www.music-ir.org/mirex/2008/abs/.pdf T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 3]<br />
 
'''LRPPI4''' = [https://www.music-ir.org/mirex/2008/abs/.pdf T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 4]<br />
 
'''LRPPI4''' = [https://www.music-ir.org/mirex/2008/abs/.pdf T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 4]<br />
'''ME1''' = [https://www.music-ir.org/mirex/2008/abs/AI_CC_GC_MC_AS_mandel.pdf M. I. Mandel, D. P. W. Ellis 1]<br />
+
'''ME1''' = [https://www.music-ir.org/mirex/2008/abs/AA_AG_AT_MM_CC_mandel.pdf M. I. Mandel, D. P. W. Ellis 1]<br />
'''ME2''' = [https://www.music-ir.org/mirex/2008/abs/AI_CC_GC_MC_AS_mandel.pdf M. I. Mandel, D. P. W. Ellis 2]<br />
+
'''ME2''' = [https://www.music-ir.org/mirex/2008/abs/AA_AG_AT_MM_CC_mandel.pdf M. I. Mandel, D. P. W. Ellis 2]<br />
'''ME3''' = [https://www.music-ir.org/mirex/2008/abs/AI_CC_GC_MC_AS_mandel.pdf M. I. Mandel, D. P. W. Ellis 3]<br />
+
'''ME3''' = [https://www.music-ir.org/mirex/2008/abs/AA_AG_AT_MM_CC_mandel.pdf M. I. Mandel, D. P. W. Ellis 3]<br />
  
 
==Overall Summary Results==
 
==Overall Summary Results==

Revision as of 04:49, 25 September 2008

Introduction

These are the results for the 2008 running of the Audio Classical Composer Identification task. For background information about this task set please refer to the 2007:Audio Classical Composer Identification page.

The data set consisted of 2772 30 second audio clips. The composers represented were:

  1. Bach
  2. Beethoven
  3. Brahms
  4. Chopin
  5. Dvorak
  6. Handel
  7. Haydn
  8. Mendelssohnn
  9. Mozart
  10. Schubert
  11. Vivaldi

The goal was to correctly identify the composer who wrote each of the pieces represented.


General Legend

Team ID

GP1 = G. Peeters
GT1 = G. Tzanetakis
GT2 = G. Tzanetakis
GT3 = G. Tzanetakis
LRPPI1 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 1
LRPPI2 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 2
LRPPI3 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 3
LRPPI4 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 4
ME1 = M. I. Mandel, D. P. W. Ellis 1
ME2 = M. I. Mandel, D. P. W. Ellis 2
ME3 = M. I. Mandel, D. P. W. Ellis 3

Overall Summary Results

MIREX 2008 Audio Classical Composer Classification Summary Results - Raw Classification Accuracy Averaged Over Three Train/Test Folds

file /nema-raid/www/mirex/results/composer/audiocomposer.avg.results.csv not found

Accuracy Across Folds

file /nema-raid/www/mirex/results/composer/audiocomposer.results.fold.csv not found

Accuracy Across Categories

file /nema-raid/www/mirex/results/composer/audiocomposer.results.class.csv not found

MIREX 2008 Audio Classical Composer Classification Evaluation Logs and Confusion Matrices

MIREX 2008 Audio Classical Composer Classification Run Times

file /nema-raid/www/mirex/results/composer.runtime.csv not found

CSV Files Without Rounding

audiocomposer_results_fold.csv
audiocomposer_results_class.csv

Results By Algorithm

(.tar.gz)
GP1 = G. Peeters
GT1 = G. Tzanetakis
GT2 = G. Tzanetakis
GT3 = G. Tzanetakis
LRPPI1 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 1
LRPPI2 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 2
LRPPI3 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 3
LRPPI4 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 4
ME1 = I. M. Mandel, D. P. W. Ellis 1
ME2 = I. M. Mandel, D. P. W. Ellis 2
ME3 = I. M. Mandel, D. P. W. Ellis 3

Friedman's Test for Significant Differences

Classes vs. Systems

The Friedman test was run in MATLAB against the average accuracy for each class.

Friedman's Anova Table

file /nema-raid/www/mirex/results/composer/perClassAccuracy.friedman.csv not found

Tukey-Kramer HSD Multi-Comparison

The Tukey-Kramer HSD multi-comparison data below was generated using the following MATLAB instruction. Command: [c, m, h, gnames] = multicompare(stats, 'ctype', 'tukey-kramer', 'estimate', 'friedman', 'alpha', 0.05);

file /nema-raid/www/mirex/results/composer/perClassAccuracy.friedman.detail.csv not found

File:Composer.perClassAccuracy.friedman.tukeyKramerHSD.png

Folds vs. Systems

The Friedman test was run in MATLAB against the accuracy for each fold.

Friedman's Anova Table

file /nema-raid/www/mirex/results/composer/perFoldAccuracy.friedman.csv not found

Tukey-Kramer HSD Multi-Comparison

The Tukey-Kramer HSD multi-comparison data below was generated using the following MATLAB instruction. Command: [c, m, h, gnames] = multicompare(stats, 'ctype', 'tukey-kramer', 'estimate', 'friedman', 'alpha', 0.05);

file /nema-raid/www/mirex/results/composer/perFoldAccuracy.friedman.detail.csv not found

File:Composer.perFoldAccuracy.friedman.tukeyKramerHSD.png