2010:Symbolic Melodic Similarity Results

From MIREX Wiki

Introduction

These are the results for the 2010 running of the Symbolic Melodic Similarity task set. For background information about this task set please refer to the 2010:Symbolic Melodic Similarity page.

Each system was given a query and returned the 10 most melodically similar songs from those taken from the Essen Collection (5274 pieces in the MIDI format; see ESAC Data Homepage for more information). For each query, we made four classes of error-mutations, thus the set comprises the following query classes:

  • 0. No errors
  • 1. One note deleted
  • 2. One note inserted
  • 3. One interval enlarged
  • 4. One interval compressed

For each query (and its 4 mutations), the returned results (candidates) from all systems were then grouped together (query set) for evaluation by the human graders. The graders were provide with only heard perfect version against which to evaluate the candidates and did not know whether the candidates came from a perfect or mutated query. Each query/candidate set was evaluated by 1 individual grader. Using the Evalutron 6000 system, the graders gave each query/candidate pair two types of scores. Graders were asked to provide 1 categorical score with 3 categories: NS,SS,VS as explained below, and one fine score (in the range from 0 to 100).

Evalutron 6000 Summary Data

Number of evaluators = 6
Number of evaluations per query/candidate pair = 1
Number of queries per grader = 1
Total number of candidates returned = 3900
Total number of unique query/candidate pairs graded = 895
Average number of query/candidate pairs evaluated per grader: 149
Number of queries = 6 (perfect) with each perfect query error-mutated 4 different ways = 30

General Legend

General Legend

Sub code Submission name Abstract Contributors
HFRA1 SMS simbals PDF Pierre Hanna, Pascal Ferraro, Matthias Robine, Julien Allali
JU1 SMS-Domain PDF Julián Urbano, Juan Lloréns, Jorge Morato, Sonia Sánchez-Cuadrado
JU2 SMS-PitchDeriv PDF Julián Urbano, Juan Lloréns, Jorge Morato, Sonia Sánchez-Cuadrado
JU3 SMS-ParamDeriv PDF Julián Urbano, Juan Lloréns, Jorge Morato, Sonia Sánchez-Cuadrado
JU4 SMS-Shape PDF Julián Urbano, Juan Lloréns, Jorge Morato, Sonia Sánchez-Cuadrado
LL1 CbrahmsS2 PDF Mika Laitinen, Kjell Lemström
LL2 CbrahmsW2 PDF Mika Laitinen, Kjell Lemström
RI1 UAC PDF David Rizo, José Manuel Iñesta
RI2 UAT PDF David Rizo, José Manuel Iñesta
RI3 UAT3 PDF David Rizo, José Manuel Iñesta
RI4 UAPR PDF David Rizo, José Manuel Iñesta
SU1 NGR5 PDF Iman Suyoto, Alexandra Uitdenbogerd
SU2 PIOI PDF Iman Suyoto, Alexandra Uitdenbogerd

Broad Categories

NS = Not Similar
SS = Somewhat Similar
VS = Very Similar

Table Headings

ADR = Average Dynamic Recall
NRGB = Normalize Recall at Group Boundaries
AP = Average Precision (non-interpolated)
PND = Precision at N Documents

Calculating Summary Measures

Fine(1) = Sum of fine-grained human similarity decisions (0-100).
PSum(1) = Sum of human broad similarity decisions: NS=0, SS=1, VS=2.
WCsum(1) = 'World Cup' scoring: NS=0, SS=1, VS=3 (rewards Very Similar).
SDsum(1) = 'Stephen Downie' scoring: NS=0, SS=1, VS=4 (strongly rewards Very Similar).
Greater0(1) = NS=0, SS=1, VS=1 (binary relevance judgment).
Greater1(1) = NS=0, SS=0, VS=1 (binary relevance judgment using only Very Similar).

(1)Normalized to the range 0 to 1.

Summary Results

Run Times

Participant Runtime (min) Machine
HFRA1 16 nema-c-1-2
JU1 7 win-0-1-1
JU2 15 win-0-1-1
JU3 21 win-0-1-1
JU4 20 win-0-1-1
LL1 205 compute-1-0
LL2 286 compute-1-0
RI1 13 nema-c-1-2
RI2 4 nema-c-1-2
RI3 6 nema-c-1-2
RI4 5 nema-c-1-2
SU1 26 compute-1-0
SU2 8 compute-1-0

download these results as csv

Overall Scores (Includes Perfect and Error Candidates)

Overall HFRA JU1 JU2 JU3 JU4 LL1 LL2 RI1 RI2 RI3 RI4 SU1 SU2
ADR 0.2472 0.3069 0.3091 0.3168 0.3713 0.3077 0.2105 0.2744 0.1078 0.2234 0.1384 0.2904 0.2487
NRGB 0.2405 0.2974 0.2941 0.2877 0.3278 0.2989 0.1730 0.2751 0.1167 0.2028 0.1581 0.2651 0.2361
AP 0.1914 0.2998 0.2987 0.3012 0.3492 0.2398 0.1816 0.2560 0.0660 0.1448 0.1281 0.2454 0.2265
PND 0.2829 0.3726 0.3726 0.3681 0.3985 0.3410 0.2226 0.3530 0.1390 0.2241 0.2062 0.3353 0.2839
Fine 0.5625 0.5793 0.5832 0.5806 0.6055 0.5799 0.4140 0.5453 0.3794 0.4705 0.5219 0.5356 0.5099
Psum 0.5783 0.6133 0.6200 0.6150 0.6417 0.6000 0.4017 0.5817 0.3583 0.4983 0.5583 0.5433 0.5317
WCsum 0.5122 0.5589 0.5633 0.5589 0.5800 0.5478 0.3489 0.5200 0.3022 0.4289 0.4789 0.5033 0.4844
SDsum 0.4792 0.5317 0.5350 0.5308 0.5492 0.5217 0.3225 0.4892 0.2742 0.3942 0.4392 0.4833 0.4608
Greater0 0.7767 0.7767 0.7900 0.7833 0.8267 0.7567 0.5600 0.7667 0.5267 0.7067 0.7967 0.6633 0.6733
Greater1 0.3800 0.4500 0.4500 0.4467 0.4567 0.4433 0.2433 0.3967 0.1900 0.2900 0.3200 0.4233 0.3900

download these results as csv

Scores by Query Error Types

No_Errors HFRA JU1 JU2 JU3 JU4 LL1 LL2 RI1 RI2 RI3 RI4 SU1 SU2
ADR 0.2576 0.3492 0.3492 0.3585 0.3946 0.3213 0.1688 0.2799 0.1536 0.3026 0.1346 0.2811 0.2822
NRGB 0.2420 0.3279 0.3279 0.3279 0.3445 0.2973 0.1428 0.2903 0.1640 0.2688 0.1615 0.2543 0.2388
AP 0.2122 0.3470 0.3512 0.3574 0.3898 0.2708 0.1823 0.2634 0.1107 0.2279 0.1461 0.2457 0.2612
PND 0.2750 0.4097 0.4097 0.4097 0.4264 0.3847 0.2250 0.3556 0.2014 0.2847 0.2000 0.3306 0.2750
Fine 0.5452 0.6293 0.6227 0.6155 0.6413 0.5958 0.4188 0.5450 0.4162 0.5172 0.5545 0.5755 0.5328
Psum 0.5667 0.6667 0.6583 0.6500 0.6750 0.6250 0.4083 0.5750 0.4167 0.5500 0.6000 0.5833 0.5583
WCsum 0.5000 0.6056 0.6000 0.5944 0.6111 0.5722 0.3611 0.5167 0.3667 0.4833 0.5167 0.5389 0.5111
SDsum 0.4667 0.5750 0.5708 0.5667 0.5792 0.5458 0.3375 0.4875 0.3417 0.4500 0.4750 0.5167 0.4875
Greater0 0.7667 0.8500 0.8333 0.8167 0.8667 0.7833 0.5500 0.7500 0.5667 0.7500 0.8500 0.7167 0.7000
Greater1 0.3667 0.4833 0.4833 0.4833 0.4833 0.4667 0.2667 0.4000 0.2667 0.3500 0.3500 0.4500 0.4167

download these results as csv

Deleted HFRA JU1 JU2 JU3 JU4 LL1 LL2 RI1 RI2 RI3 RI4 SU1 SU2
ADR 0.2440 0.3305 0.3305 0.3691 0.4068 0.2773 0.2174 0.2745 0.0329 0.1251 0.1396 0.3135 0.2400
NRGB 0.2423 0.3313 0.3313 0.3299 0.3577 0.2450 0.1855 0.2487 0.0567 0.1200 0.1443 0.2973 0.2362
AP 0.2339 0.3547 0.3547 0.3741 0.4036 0.2194 0.2305 0.2555 0.0095 0.0542 0.0805 0.2808 0.2177
PND 0.3241 0.4278 0.4278 0.4278 0.4444 0.2889 0.2370 0.3222 0.0500 0.1333 0.1852 0.3870 0.2704
Fine 0.5533 0.6165 0.6165 0.6198 0.6323 0.5487 0.4182 0.5242 0.2983 0.3795 0.4598 0.5328 0.5168
Psum 0.5667 0.6583 0.6583 0.6667 0.6750 0.5500 0.4167 0.5500 0.2333 0.3667 0.4833 0.5417 0.5167
WCsum 0.5111 0.6056 0.6056 0.6111 0.6167 0.5056 0.3611 0.5000 0.1833 0.3056 0.4167 0.5056 0.4722
SDsum 0.4833 0.5792 0.5792 0.5833 0.5875 0.4833 0.3333 0.4750 0.1583 0.2750 0.3833 0.4875 0.4500
Greater0 0.7333 0.8167 0.8167 0.8333 0.8500 0.6833 0.5833 0.7000 0.3833 0.5500 0.6833 0.6500 0.6500
Greater1 0.4000 0.5000 0.5000 0.5000 0.5000 0.4167 0.2500 0.4000 0.0833 0.1833 0.2833 0.4333 0.3833

download these results as csv

Inserted HFRA JU1 JU2 JU3 JU4 LL1 LL2 RI1 RI2 RI3 RI4 SU1 SU2
ADR 0.2324 0.2751 0.3156 0.3193 0.3555 0.3131 0.3225 0.2516 0.0488 0.1556 0.1487 0.2978 0.2253
NRGB 0.2253 0.2568 0.2635 0.2735 0.3119 0.3202 0.2693 0.2354 0.0530 0.1406 0.1598 0.2671 0.2303
AP 0.1719 0.2679 0.2899 0.2803 0.3217 0.2098 0.2216 0.2209 0.0218 0.0963 0.1139 0.2360 0.1886
PND 0.2656 0.3587 0.3754 0.3587 0.3921 0.2899 0.2751 0.3288 0.0685 0.1942 0.2146 0.3365 0.3198
Fine 0.5512 0.5880 0.6032 0.5932 0.6205 0.5545 0.4202 0.5315 0.3300 0.4363 0.5157 0.5088 0.5070
Psum 0.5500 0.6417 0.6583 0.6417 0.6750 0.5667 0.4083 0.5750 0.3083 0.4750 0.5500 0.5167 0.5500
WCsum 0.4889 0.5778 0.5944 0.5778 0.6056 0.5111 0.3556 0.5000 0.2389 0.4000 0.4667 0.4778 0.4944
SDsum 0.4583 0.5458 0.5625 0.5458 0.5708 0.4833 0.3292 0.4625 0.2042 0.3625 0.4250 0.4583 0.4667
Greater0 0.7333 0.8333 0.8500 0.8333 0.8833 0.7333 0.5667 0.8000 0.5167 0.7000 0.8000 0.6333 0.7167
Greater1 0.3667 0.4500 0.4667 0.4500 0.4667 0.4000 0.2500 0.3500 0.1000 0.2500 0.3000 0.4000 0.3833

download these results as csv

Enlarged HFRA JU1 JU2 JU3 JU4 LL1 LL2 RI1 RI2 RI3 RI4 SU1 SU2
ADR 0.2349 0.2665 0.2609 0.2352 0.3300 0.3171 0.1763 0.3018 0.1346 0.2593 0.1379 0.2691 0.2548
NRGB 0.2289 0.2804 0.2637 0.2350 0.2961 0.3428 0.1381 0.3171 0.1403 0.2394 0.1670 0.2514 0.2489
AP 0.1564 0.2257 0.2095 0.1907 0.2693 0.2563 0.1179 0.2733 0.0730 0.1450 0.1618 0.2106 0.2315
PND 0.2389 0.3111 0.2944 0.2889 0.3389 0.3889 0.1778 0.3833 0.1444 0.2444 0.2444 0.2944 0.2667
Fine 0.5760 0.5027 0.4973 0.5047 0.5455 0.6010 0.3932 0.5692 0.4278 0.5153 0.5333 0.5248 0.4858
Psum 0.6000 0.5167 0.5083 0.5250 0.5667 0.6417 0.3667 0.5917 0.4167 0.5833 0.5750 0.5250 0.5000
WCsum 0.5222 0.4722 0.4611 0.4722 0.5056 0.5944 0.3167 0.5333 0.3556 0.5056 0.4944 0.4833 0.4556
SDsum 0.4833 0.4500 0.4375 0.4458 0.4750 0.5708 0.2917 0.5042 0.3250 0.4667 0.4542 0.4625 0.4333
Greater0 0.8333 0.6500 0.6500 0.6833 0.7500 0.7833 0.5167 0.7667 0.6000 0.8167 0.8167 0.6500 0.6333
Greater1 0.3667 0.3833 0.3667 0.3667 0.3833 0.5000 0.2167 0.4167 0.2333 0.3500 0.3333 0.4000 0.3667

download these results as csv

Compressed HFRA JU1 JU2 JU3 JU4 LL1 LL2 RI1 RI2 RI3 RI4 SU1 SU2
ADR 0.2671 0.3132 0.2891 0.3017 0.3694 0.3096 0.1673 0.2643 0.1691 0.2745 0.1313 0.2903 0.2413
NRGB 0.2642 0.2908 0.2842 0.2723 0.3288 0.2891 0.1293 0.2838 0.1697 0.2451 0.1580 0.2552 0.2264
AP 0.1828 0.3036 0.2884 0.3036 0.3617 0.2430 0.1555 0.2670 0.1149 0.2009 0.1383 0.2540 0.2334
PND 0.3110 0.3555 0.3555 0.3555 0.3907 0.3527 0.1983 0.3751 0.2305 0.2638 0.1870 0.3282 0.2877
Fine 0.5868 0.5602 0.5762 0.5700 0.5877 0.5997 0.4197 0.5567 0.4247 0.5040 0.5462 0.5360 0.5068
Psum 0.6083 0.5833 0.6167 0.5917 0.6167 0.6167 0.4083 0.6167 0.4167 0.5167 0.5833 0.5500 0.5333
WCsum 0.5389 0.5333 0.5556 0.5389 0.5611 0.5556 0.3500 0.5500 0.3667 0.4500 0.5000 0.5111 0.4889
SDsum 0.5042 0.5083 0.5250 0.5125 0.5333 0.5250 0.3208 0.5167 0.3417 0.4167 0.4583 0.4917 0.4667
Greater0 0.8167 0.7333 0.8000 0.7500 0.7833 0.8000 0.5833 0.8167 0.5667 0.7167 0.8333 0.6667 0.6667
Greater1 0.4000 0.4333 0.4333 0.4333 0.4500 0.4333 0.2333 0.4167 0.2667 0.3167 0.3333 0.4333 0.4000

download these results as csv

Friedman Test with Multiple Comparisons Results (p=0.05)

The Friedman test was run in MATLAB against the Fine summary data over the 30 queries.
Command: [c,m,h,gnames] = multcompare(stats, 'ctype', 'tukey-kramer','estimate', 'friedman', 'alpha', 0.05);

TeamID TeamID Lowerbound Mean Upperbound Significance
JU4 JU2 -1.6410 1.6667 4.9743 FALSE
JU4 JU3 -1.8077 1.5000 4.8077 FALSE
JU4 LL1 -1.9577 1.3500 4.6577 FALSE
JU4 JU1 -1.6743 1.6333 4.9410 FALSE
JU4 HFRA -2.1243 1.1833 4.4910 FALSE
JU4 RI1 -1.8910 1.4167 4.7243 FALSE
JU4 SU1 -0.8077 2.5000 5.8077 FALSE
JU4 RI4 0.1590 3.4667 6.7743 TRUE
JU4 SU2 0.6423 3.9500 7.2577 TRUE
JU4 RI3 0.5757 3.8833 7.1910 TRUE
JU4 LL2 2.7757 6.0833 9.3910 TRUE
JU4 RI2 3.3757 6.6833 9.9910 TRUE
JU2 JU3 -3.4743 -0.1667 3.1410 FALSE
JU2 LL1 -3.6243 -0.3167 2.9910 FALSE
JU2 JU1 -3.3410 -0.0333 3.2743 FALSE
JU2 HFRA -3.7910 -0.4833 2.8243 FALSE
JU2 RI1 -3.5577 -0.2500 3.0577 FALSE
JU2 SU1 -2.4743 0.8333 4.1410 FALSE
JU2 RI4 -1.5077 1.8000 5.1077 FALSE
JU2 SU2 -1.0243 2.2833 5.5910 FALSE
JU2 RI3 -1.0910 2.2167 5.5243 FALSE
JU2 LL2 1.1090 4.4167 7.7243 TRUE
JU2 RI2 1.7090 5.0167 8.3243 TRUE
JU3 LL1 -3.4577 -0.1500 3.1577 FALSE
JU3 JU1 -3.1743 0.1333 3.4410 FALSE
JU3 HFRA -3.6243 -0.3167 2.9910 FALSE
JU3 RI1 -3.3910 -0.0833 3.2243 FALSE
JU3 SU1 -2.3077 1.0000 4.3077 FALSE
JU3 RI4 -1.3410 1.9667 5.2743 FALSE
JU3 SU2 -0.8577 2.4500 5.7577 FALSE
JU3 RI3 -0.9243 2.3833 5.6910 FALSE
JU3 LL2 1.2757 4.5833 7.8910 TRUE
JU3 RI2 1.8757 5.1833 8.4910 TRUE
LL1 JU1 -3.0243 0.2833 3.5910 FALSE
LL1 HFRA -3.4743 -0.1667 3.1410 FALSE
LL1 RI1 -3.2410 0.0667 3.3743 FALSE
LL1 SU1 -2.1577 1.1500 4.4577 FALSE
LL1 RI4 -1.1910 2.1167 5.4243 FALSE
LL1 SU2 -0.7077 2.6000 5.9077 FALSE
LL1 RI3 -0.7743 2.5333 5.8410 FALSE
LL1 LL2 1.4257 4.7333 8.0410 TRUE
LL1 RI2 2.0257 5.3333 8.6410 TRUE
JU1 HFRA -3.7577 -0.4500 2.8577 FALSE
JU1 RI1 -3.5243 -0.2167 3.0910 FALSE
JU1 SU1 -2.4410 0.8667 4.1743 FALSE
JU1 RI4 -1.4743 1.8333 5.1410 FALSE
JU1 SU2 -0.9910 2.3167 5.6243 FALSE
JU1 RI3 -1.0577 2.2500 5.5577 FALSE
JU1 LL2 1.1423 4.4500 7.7577 TRUE
JU1 RI2 1.7423 5.0500 8.3577 TRUE
HFRA RI1 -3.0743 0.2333 3.5410 FALSE
HFRA SU1 -1.9910 1.3167 4.6243 FALSE
HFRA RI4 -1.0243 2.2833 5.5910 FALSE
HFRA SU2 -0.5410 2.7667 6.0743 FALSE
HFRA RI3 -0.6077 2.7000 6.0077 FALSE
HFRA LL2 1.5923 4.9000 8.2077 TRUE
HFRA RI2 2.1923 5.5000 8.8077 TRUE
RI1 SU1 -2.2243 1.0833 4.3910 FALSE
RI1 RI4 -1.2577 2.0500 5.3577 FALSE
RI1 SU2 -0.7743 2.5333 5.8410 FALSE
RI1 RI3 -0.8410 2.4667 5.7743 FALSE
RI1 LL2 1.3590 4.6667 7.9743 TRUE
RI1 RI2 1.9590 5.2667 8.5743 TRUE
SU1 RI4 -2.3410 0.9667 4.2743 FALSE
SU1 SU2 -1.8577 1.4500 4.7577 FALSE
SU1 RI3 -1.9243 1.3833 4.6910 FALSE
SU1 LL2 0.2757 3.5833 6.8910 TRUE
SU1 RI2 0.8757 4.1833 7.4910 TRUE
RI4 SU2 -2.8243 0.4833 3.7910 FALSE
RI4 RI3 -2.8910 0.4167 3.7243 FALSE
RI4 LL2 -0.6910 2.6167 5.9243 FALSE
RI4 RI2 -0.0910 3.2167 6.5243 FALSE
SU2 RI3 -3.3743 -0.0667 3.2410 FALSE
SU2 LL2 -1.1743 2.1333 5.4410 FALSE
SU2 RI2 -0.5743 2.7333 6.0410 FALSE
RI3 LL2 -1.1077 2.2000 5.5077 FALSE
RI3 RI2 -0.5077 2.8000 6.1077 FALSE
LL2 RI2 -2.7077 0.6000 3.9077 FALSE

download these results as csv

2010 sms fine scores friedmans.png

Raw Scores

The raw data derived from the Evalutron 6000 human evaluations are located on the 2010:Symbolic Melodic Similarity Raw Data page.