2013:Discovery of Repeated Themes & Sections Results

From MIREX Wiki
Revision as of 02:13, 26 October 2013 by Tom Collins (talk | contribs) (In Brief)

This task report is currently under construction. Plots (png files) are missing currently due to a technical problem. Please check back soon for these.

Introduction

The task: algorithms take a piece of music as input, and output a list of patterns repeated within that piece. A pattern is defined as a set of ontime-pitch pairs that occurs twice (i.e., is repeated at least once) in a piece of music. The second, third, etc. occurrences of the pattern will likely be shifted in time and/or transposed, relative to the first occurrence. Ideally an algorithm will be able to discover all exact and inexact occurrences of a pattern within a piece, so in evaluating this task we are interested in both

  • (1) whether an algorithm can discover one occurrence, up to time shift and transposition, and
  • (2) to what extent it can find all occurrences.

The metrics establishment recall, establishment precision and establishment F1 address (1), and the metrics occurrence recall, occurrence precision, and occurrence F1 address (2).

Existing approaches to music structure analysis in MIR tend to focus on segmentation. The contribution of this task is to afford access to the note content itself; not just requiring algorithms to label time windows. The ground truth also contains nested patterns, reflecting the often hierarchical nature of musical repetition.

Ground Truth and Algorithms

The ground truth, called the Johannes Kepler University Patterns Test Database (JKUPTD-Aug2013), is based on motifs and themes in Barlow and Morgenstern (1953), Schoenberg (1967), and Bruhn (1993). Repeated sections are based on those marked by the composer. These annotations are supplemented with some of our own where necessary. A Development Database (JKUPDD-Aug2013) released in March enabled participants to try out their algorithms. For each piece in the Development and Test Databases, symbolic and synthesised audio versions are crossed with monophonic and polyphonic versions, giving up to four versions of the task in total: symPoly, symMono, audPoly, and audMono. Algorithms submitted to the task are are shown in Table 1.

Results

In Brief

To avoid a bias toward the more numerous submissions of Meredith (2013), DM10 was preselected for comparison with Nieto and Farbood's (2013) submissions, based on reported performance for the Development Database. Figure 2 shows establishment recall results on a per-pattern basis for the symbolic-polyphonic version of the task. DM10 outperforms NF2 according to Friedman's test (), suggesting the former is preferable for discovering at least one occurrence of each ground truth pattern. This result addresses point (1) from the introduction.

Figure 3 shows occurrence recall results on a per-pattern basis for the symbolic-polyphonic version of the task. Again, DM10 outperforms NF2 according to Friedman's test (), suggesting the former is preferable for retrieving all occurrences of a discovered ground truth pattern. This result addresses point (2) from the introduction.

It should be noted, however, that according to Friedman's test, algorithm NF2 was significantly faster than DM10 (), suggesting that the former is preferable for rapid summarisation.

The results are closer for the symbolic-monophonic version of the task (please see Figure 24), with NF1 and DM10 showing no significant difference for establishment recall on a per-pattern basis according to Friedman's test (, ns). This result relates to point (1) from the introduction. Figure 25 shows occurrence recall results on a per-pattern basis for the symbolic-monophonic version of the task. DM10 outperforms NF1 according to Friedman's test (), suggesting the former is preferable for retrieving all occurrences of a given ground truth pattern. This result relates to point (2) from the introduction.

For the audio versions of the task, algorithms NF3 (audMono) and NF4 (audPoly) were the only submissions. Nieto and Farbood (2013) are credited with being the first to define an algorithm for discovering repeated note content in a synthesised audio file that is time-locked to a symbolic representation. We include the results for this version of the task for the sake of comparison in future years.

symPoly

Test.png

Figure 2. Test figure. Proper figures to follow.


AlgId TaskVersion Piece n_P n_Q P_est R_est F1_est P_occ(c=.75) R_occ(c=.75) F_1occ(c=.75) P_3 R_3 TLF_1 runtime FRT FFTP_est FFP P_occ(c=.5) R_occ(c=.5) F_1occ(c=.5) P R F_1
NF2 symPoly piece1 5 5 0.240 0.222 0.231 0.000 0.000 0.000 0.143 0.142 0.142 15.000 0.000 0.222 0.143 0.000 0.000 0.000 0.000 0.000 0.000
NF2 symPoly piece2 5 27.000 0.277 0.446 0.342 0.793 0.793 0.793 0.078 0.253 0.120 1221.000 0.000 0.399 0.235 0.409 0.411 0.410 0.000 0.000 0.000
NF2 symPoly piece3 10.000 20.000 0.695 0.584 0.635 0.703 0.320 0.440 0.473 0.439 0.455 34.000 0.000 0.355 0.473 0.603 0.373 0.461 0.000 0.000 0.000
NF2 symPoly piece4 5 2 0.667 0.272 0.386 0.885 0.885 0.885 0.609 0.240 0.344 3.000 0.000 0.272 0.609 0.885 0.885 0.885 0.000 0.000 0.000
NF2 symPoly piece5 13.000 18.000 0.564 0.334 0.419 0.690 0.393 0.501 0.417 0.345 0.377 153.000 0.000 0.245 0.549 0.601 0.488 0.539 0.000 0.000 0.000
DM5 symPoly piece1 5 23.000 0.332 0.545 0.412 0.743 0.804 0.772 0.228 0.441 0.301 474.000 0.000 0.463 0.531 0.460 0.593 0.518 0.000 0.000 0.000
DM5 symPoly piece2 5 38.000 0.287 0.447 0.349 0.385 0.770 0.513 0.235 0.339 0.278 19896.000 0.000 0.274 0.238 0.328 0.770 0.460 0.000 0.000 0.000
DM5 symPoly piece3 10.000 10.000 0.330 0.423 0.371 0.000 0.000 0.000 0.285 0.365 0.320 762.000 0.000 0.288 0.370 0.318 0.471 0.379 0.000 0.000 0.000
DM5 symPoly piece4 5 4 0.400 0.349 0.372 0.000 0.000 0.000 0.243 0.187 0.211 14.000 0.000 0.349 0.243 0.238 0.195 0.214 0.000 0.000 0.000
DM5 symPoly piece5 13.000 33.000 0.305 0.300 0.303 0.693 0.805 0.745 0.301 0.328 0.314 36299.000 0.000 0.160 0.328 0.620 0.765 0.685 0.000 0.000 0.000
DM6 symPoly piece1 5 23.000 0.215 0.381 0.275 0.000 0.000 0.000 0.163 0.346 0.221 500.000 0.000 0.315 0.365 0.454 0.207 0.284 0.000 0.000 0.000
DM6 symPoly piece2 5 38.000 0.090 0.283 0.136 0.000 0.000 0.000 0.046 0.175 0.073 23294.000 0.000 0.207 0.102 0.100 0.033 0.050 0.000 0.000 0.000
DM6 symPoly piece3 10.000 10.000 0.145 0.164 0.154 0.000 0.000 0.000 0.152 0.204 0.174 771.000 0.000 0.143 0.209 0.000 0.000 0.000 0.000 0.000 0.000
DM6 symPoly piece4 5 4 0.321 0.234 0.271 0.000 0.000 0.000 0.165 0.127 0.143 13.000 0.000 0.234 0.165 0.250 0.125 0.167 0.000 0.000 0.000
DM6 symPoly piece5 13.000 33.000 0.119 0.189 0.146 0.000 0.000 0.000 0.084 0.193 0.117 37646.000 0.000 0.135 0.175 0.000 0.000 0.000 0.000 0.000 0.000
DM7 symPoly piece1 5 23.000 0.316 0.522 0.393 0.406 0.439 0.422 0.203 0.377 0.264 532.000 0.000 0.467 0.409 0.405 0.447 0.425 0.000 0.000 0.000
DM7 symPoly piece2 5 38.000 0.673 0.614 0.642 0.686 0.965 0.802 0.598 0.465 0.523 19926.000 0.000 0.368 0.562 0.633 0.935 0.755 0.000 0.000 0.000
DM7 symPoly piece3 10.000 10.000 0.742 0.612 0.671 0.429 0.632 0.511 0.608 0.497 0.547 783.000 0.000 0.400 0.715 0.458 0.627 0.529 0.000 0.000 0.000
DM7 symPoly piece4 5 4 0.555 0.311 0.398 0.000 0.000 0.000 0.457 0.247 0.321 14.000 0.000 0.311 0.457 0.370 0.486 0.420 0.000 0.000 0.000
DM7 symPoly piece5 13.000 33.000 0.656 0.401 0.498 0.794 0.934 0.859 0.656 0.405 0.501 35325.000 0.000 0.154 0.533 0.757 0.894 0.820 0.000 0.000 0.000
DM8 symPoly piece1 5 37.000 0.457 0.733 0.563 0.479 0.454 0.466 0.299 0.514 0.378 55.000 0.000 0.535 0.648 0.348 0.639 0.451 0.000 0.000 0.000
DM8 symPoly piece2 5 67.000 0.379 0.749 0.503 0.512 0.851 0.640 0.326 0.591 0.420 1319.000 0.000 0.223 0.211 0.401 0.826 0.540 0.000 0.000 0.000
DM8 symPoly piece3 10.000 20.000 0.425 0.488 0.454 0.547 0.834 0.661 0.385 0.417 0.401 77.000 0.000 0.324 0.337 0.475 0.693 0.563 0.000 0.000 0.000
DM8 symPoly piece4 5 21.000 0.399 0.636 0.491 0.358 0.632 0.457 0.276 0.370 0.316 3.000 0.000 0.426 0.307 0.265 0.431 0.328 0.000 0.000 0.000
DM8 symPoly piece5 13.000 69.000 0.463 0.461 0.462 0.648 0.838 0.731 0.417 0.416 0.417 3002.000 0.000 0.208 0.525 0.567 0.819 0.670 0.000 0.000 0.000
DM9 symPoly piece1 5 37.000 0.240 0.375 0.293 0.000 0.000 0.000 0.197 0.385 0.261 49.000 0.000 0.316 0.436 0.500 0.307 0.381 0.000 0.000 0.000
DM9 symPoly piece2 5 67.000 0.149 0.408 0.218 0.656 0.492 0.562 0.078 0.314 0.124 1335.000 0.000 0.199 0.129 0.656 0.329 0.438 0.000 0.000 0.000
DM9 symPoly piece3 10.000 20.000 0.177 0.225 0.198 0.000 0.000 0.000 0.125 0.201 0.154 91.000 0.000 0.152 0.146 0.406 0.317 0.356 0.000 0.000 0.000
DM9 symPoly piece4 5 21.000 0.321 0.446 0.373 0.444 0.375 0.407 0.180 0.256 0.212 2.000 0.000 0.293 0.284 0.243 0.356 0.289 0.000 0.000 0.000
DM9 symPoly piece5 13.000 69.000 0.138 0.257 0.179 0.000 0.000 0.000 0.095 0.293 0.143 2961.000 0.000 0.162 0.234 0.000 0.000 0.000 0.000 0.000 0.000
DM10 symPoly piece1 5 37.000 0.395 0.535 0.454 0.406 0.439 0.422 0.281 0.422 0.337 53.000 0.000 0.498 0.485 0.384 0.515 0.440 0.000 0.000 0.000
DM10 symPoly piece2 5 67.000 0.621 0.785 0.693 0.556 0.948 0.701 0.531 0.609 0.568 1287.000 0.000 0.313 0.313 0.512 0.917 0.657 0.000 0.000 0.000
DM10 symPoly piece3 10.000 20.000 0.670 0.557 0.608 0.592 0.831 0.691 0.641 0.474 0.545 89.000 0.000 0.330 0.751 0.509 0.782 0.617 0.000 0.000 0.000
DM10 symPoly piece4 5 21.000 0.503 0.508 0.505 0.472 0.941 0.628 0.368 0.326 0.346 3.000 0.000 0.415 0.556 0.306 0.726 0.430 0.000 0.000 0.000
DM10 symPoly piece5 13.000 69.000 0.678 0.530 0.595 0.643 0.897 0.749 0.631 0.448 0.524 3108.000 0.000 0.214 0.652 0.565 0.887 0.690 0.000 0.000 0.000

download these results as csv Table 2. Caption to go here.

symMono

audPoly

audMono