Introduction
These are the results for the 2008 running of the Audio Genre Classification task. For background information about this task set please refer to the 2008:Audio Genre Classification page. 
General Legend
Team ID
CL1 = C. Cao, M. Li 1
CL2 = C. Cao, M. Li 2
GP1 = G. Peeters
GT1 (mono) = G. Tzanetakis
GT2 (stereo) = G. Tzanetakis
GT3 (multicore) = G. Tzanetakis
LRPPI1 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de León, J. M. Iñesta 1
LRPPI2 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de León, J. M. Iñesta 2
LRPPI3 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de León, J. M. Iñesta 3
LRPPI4 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de León, J. M. Iñesta 4
ME1 = I. M. Mandel, D. P. W. Ellis 1
ME2 = I. M. Mandel, D. P. W. Ellis 2
ME3 = I. M. Mandel, D. P. W. Ellis 3
Overall Summary Results
Task 1 (MIXED) Results
MIREX 2008 Audio Genre Classification Summary Results - Raw Classification Accuracy Averaged Over Three Train/Test Folds
	
	
		| Participant | 
		Average Classifcation Accuracy | 
	
	
		| CL1 | 
		62.04% | 
	
	
		| CL2 | 
		63.39% | 
	
	
		| GP1 | 
		63.90% | 
	
	
		| GT1 | 
		64.71% | 
	
	
		| GT2 | 
		66.41% | 
	
	
		| GT3 | 
		65.62% | 
	
	
		| LRPPI1 | 
		65.06% | 
	
	
		| LRPPI2 | 
		62.26% | 
	
	
		| LRPPI3 | 
		60.84% | 
	
	
		| LRPPI4 | 
		60.46% | 
	
	
		| ME1 | 
		65.41% | 
	
	
		| ME2 | 
		65.30% | 
	
	
		| ME3 | 
		65.20% | 
	
	
download these results as csv
Accuracy Across Folds
	
	
		| Classification fold | 
		CL1 | 
		CL2 | 
		GP1 | 
		GT1 | 
		GT2 | 
		GT3 | 
		LRPPI1 | 
		LRPPI2 | 
		LRPPI3 | 
		LRPPI4 | 
		ME1 | 
		ME2 | 
		ME3 | 
	
	
		| 0 | 
		0.592 | 
		0.598 | 
		0.634 | 
		0.639 | 
		0.642 | 
		0.654 | 
		0.650 | 
		0.610 | 
		0.598 | 
		0.606 | 
		0.631 | 
		0.631 | 
		0.628 | 
	
	
		| 1 | 
		0.644 | 
		0.661 | 
		0.634 | 
		0.651 | 
		0.682 | 
		0.664 | 
		0.669 | 
		0.637 | 
		0.626 | 
		0.617 | 
		0.668 | 
		0.665 | 
		0.666 | 
	
	
		| 2 | 
		0.625 | 
		0.643 | 
		0.649 | 
		0.652 | 
		0.669 | 
		0.651 | 
		0.633 | 
		0.622 | 
		0.602 | 
		0.592 | 
		0.663 | 
		0.662 | 
		0.663 | 
	
	
download these results as csv
Accuracy Across Categories
	
	
		| Class | 
		CL1 | 
		CL2 | 
		GP1 | 
		GT1 | 
		GT2 | 
		GT3 | 
		LRPPI1 | 
		LRPPI2 | 
		LRPPI3 | 
		LRPPI4 | 
		ME1 | 
		ME2 | 
		ME3 | 
	
	
		| BAROQUE | 
		0.616 | 
		0.637 | 
		0.750 | 
		0.669 | 
		0.724 | 
		0.673 | 
		0.673 | 
		0.660 | 
		0.666 | 
		0.629 | 
		0.754 | 
		0.759 | 
		0.757 | 
	
	
		| BLUES | 
		0.711 | 
		0.741 | 
		0.674 | 
		0.690 | 
		0.677 | 
		0.701 | 
		0.700 | 
		0.703 | 
		0.713 | 
		0.689 | 
		0.713 | 
		0.706 | 
		0.706 | 
	
	
		| CLASSICAL | 
		0.608 | 
		0.598 | 
		0.592 | 
		0.559 | 
		0.649 | 
		0.606 | 
		0.563 | 
		0.603 | 
		0.559 | 
		0.524 | 
		0.666 | 
		0.669 | 
		0.672 | 
	
	
		| COUNTRY | 
		0.624 | 
		0.596 | 
		0.697 | 
		0.793 | 
		0.830 | 
		0.679 | 
		0.669 | 
		0.640 | 
		0.621 | 
		0.617 | 
		0.660 | 
		0.656 | 
		0.653 | 
	
	
		| EDANCE | 
		0.560 | 
		0.591 | 
		0.536 | 
		0.590 | 
		0.624 | 
		0.648 | 
		0.672 | 
		0.626 | 
		0.646 | 
		0.686 | 
		0.657 | 
		0.649 | 
		0.639 | 
	
	
		| JAZZ | 
		0.679 | 
		0.699 | 
		0.606 | 
		0.627 | 
		0.682 | 
		0.626 | 
		0.640 | 
		0.602 | 
		0.566 | 
		0.574 | 
		0.679 | 
		0.676 | 
		0.680 | 
	
	
		| METAL | 
		0.677 | 
		0.709 | 
		0.750 | 
		0.713 | 
		0.656 | 
		0.733 | 
		0.707 | 
		0.642 | 
		0.623 | 
		0.643 | 
		0.612 | 
		0.627 | 
		0.629 | 
	
	
		| RAPHIPHOP | 
		0.809 | 
		0.823 | 
		0.873 | 
		0.846 | 
		0.846 | 
		0.854 | 
		0.860 | 
		0.837 | 
		0.826 | 
		0.848 | 
		0.841 | 
		0.836 | 
		0.837 | 
	
	
		| ROCKROLL | 
		0.420 | 
		0.418 | 
		0.406 | 
		0.384 | 
		0.414 | 
		0.447 | 
		0.448 | 
		0.391 | 
		0.377 | 
		0.391 | 
		0.450 | 
		0.450 | 
		0.448 | 
	
	
		| ROMANTIC | 
		0.501 | 
		0.527 | 
		0.508 | 
		0.602 | 
		0.540 | 
		0.597 | 
		0.574 | 
		0.523 | 
		0.488 | 
		0.444 | 
		0.510 | 
		0.505 | 
		0.500 | 
	
	
download these results as csv
MIREX 2008 Audio Genre Classification Evaluation Logs and Confusion Matrices
MIREX 2008 Audio Genre Classification Run Times
	
	
		| Participant | 
		Runtime (hh:mm) / Fold | 
	
	
		| CL1 | 
		Feat Ex: 01:29 Train/Classify: 0:33 | 
	
	
		| CL2 | 
		Feat Ex: 01:31 Train/Classify: 01:01 | 
	
	
		| GP1 | 
		Feat Ex: 11:37 Train/Classify: 00:25 | 
	
	
		| GT1 | 
		Feat Ex/Train/Classify: 00:36 | 
	
	
		| GT2 | 
		Feat Ex/Train/Classify: 00:35 | 
	
	
		| GT3 | 
		Feat Ex: 00:12 Train/Classify: 00:01 | 
	
	
		| LRPPI1 | 
		Feat Ex: 28:50 Train/Classify: 00:02 | 
	
	
		| LRPPI2 | 
		Feat Ex: 28:50 Train/Classify: 00:17 | 
	
	
		| LRPPI3 | 
		Feat Ex: 28:50 Train/Classify: 00:20 | 
	
	
		| LRPPI4 | 
		Feat Ex: 28:50 Train/Classify: 00:35 | 
	
	
		| ME1 | 
		Feat Ex: 3:35 Train/Classify: 00:02 | 
	
	
		| ME2 | 
		Feat Ex: 3:35 Train/Classify: 00:02 | 
	
	
		| ME3 | 
		Feat Ex: 3:35 Train/Classify: 00:02 | 
	
	
download these results as csv
CSV Files Without Rounding
audiogenre_results_fold.csv
audiogenre_results_class.csv
Results By Algorithm
(.tar.gz) 
CL1 = C. Cao, M. Li 1
CL2 = C. Cao, M. Li 2
LRPPI1 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de León, J. M. Iñesta 1
LRPPI2 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de León, J. M. Iñesta 2
LRPPI3 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de León, J. M. Iñesta 3
LRPPI4 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de León, J. M. Iñesta 4
ME1 = I. M. Mandel, D. P. W. Ellis 1
ME2 = I. M. Mandel, D. P. W. Ellis 2
ME3 = I. M. Mandel, D. P. W. Ellis 3
GP = G. Peeters
GT1 = G. Tzanetakis
GT2 = G. Tzanetakis
GT3 = G. Tzanetakis
Task 2 (LATIN) Results
MIREX 2008 Audio Genre Classification Summary Results - Raw Classification Accuracy Averaged Over Three Train/Test Folds
	
	
		| Participant | 
		Average Classifcation Accuracy | 
	
	
		| CL1 | 
		65.17% | 
	
	
		| CL2 | 
		64.04% | 
	
	
		| GP1 | 
		62.72% | 
	
	
		| GT1 | 
		53.65% | 
	
	
		| GT2 | 
		53.79% | 
	
	
		| GT3 | 
		53.67% | 
	
	
		| LRPPI1 | 
		58.64% | 
	
	
		| LRPPI2 | 
		62.23% | 
	
	
		| LRPPI3 | 
		59.55% | 
	
	
		| LRPPI4 | 
		59.00% | 
	
	
		| ME1 | 
		54.15% | 
	
	
		| ME2 | 
		54.70% | 
	
	
		| ME3 | 
		54.99% | 
	
	
download these results as csv
Accuracy Across Folds
	
	
		| Classification fold | 
		CL1 | 
		CL2 | 
		GP1 | 
		GT1 | 
		GT2 | 
		GT3 | 
		LRPPI1 | 
		LRPPI2 | 
		LRPPI3 | 
		LRPPI4 | 
		ME1 | 
		ME2 | 
		ME3 | 
	
	
		| 0 | 
		0.755 | 
		0.750 | 
		0.694 | 
		0.674 | 
		0.677 | 
		0.657 | 
		0.661 | 
		0.697 | 
		0.671 | 
		0.680 | 
		0.681 | 
		0.684 | 
		0.685 | 
	
	
		| 1 | 
		0.541 | 
		0.528 | 
		0.553 | 
		0.435 | 
		0.435 | 
		0.422 | 
		0.512 | 
		0.573 | 
		0.526 | 
		0.506 | 
		0.403 | 
		0.409 | 
		0.415 | 
	
	
		| 2 | 
		0.660 | 
		0.644 | 
		0.634 | 
		0.501 | 
		0.502 | 
		0.531 | 
		0.587 | 
		0.597 | 
		0.590 | 
		0.585 | 
		0.541 | 
		0.548 | 
		0.550 | 
	
	
download these results as csv
Accuracy Across Categories
	
	
		| Class | 
		CL1 | 
		CL2 | 
		GP1 | 
		GT1 | 
		GT2 | 
		GT3 | 
		LRPPI1 | 
		LRPPI2 | 
		LRPPI3 | 
		LRPPI4 | 
		ME1 | 
		ME2 | 
		ME3 | 
	
	
		| axe | 
		0.753 | 
		0.745 | 
		0.558 | 
		0.637 | 
		0.640 | 
		0.695 | 
		0.529 | 
		0.560 | 
		0.537 | 
		0.528 | 
		0.679 | 
		0.679 | 
		0.681 | 
	
	
		| bachata | 
		0.957 | 
		0.622 | 
		0.969 | 
		0.595 | 
		0.592 | 
		0.587 | 
		0.957 | 
		0.950 | 
		0.956 | 
		0.957 | 
		0.932 | 
		0.935 | 
		0.935 | 
	
	
		| bolero | 
		0.630 | 
		0.633 | 
		0.768 | 
		0.702 | 
		0.705 | 
		0.746 | 
		0.683 | 
		0.726 | 
		0.646 | 
		0.668 | 
		0.664 | 
		0.662 | 
		0.666 | 
	
	
		| forro | 
		0.356 | 
		0.335 | 
		0.270 | 
		0.146 | 
		0.145 | 
		0.127 | 
		0.258 | 
		0.342 | 
		0.292 | 
		0.287 | 
		0.174 | 
		0.186 | 
		0.188 | 
	
	
		| gaucha | 
		0.501 | 
		0.491 | 
		0.345 | 
		0.348 | 
		0.348 | 
		0.299 | 
		0.345 | 
		0.357 | 
		0.327 | 
		0.338 | 
		0.435 | 
		0.436 | 
		0.434 | 
	
	
		| merengue | 
		0.895 | 
		0.898 | 
		0.897 | 
		0.812 | 
		0.806 | 
		0.784 | 
		0.847 | 
		0.794 | 
		0.825 | 
		0.833 | 
		0.698 | 
		0.699 | 
		0.728 | 
	
	
		| pagode | 
		0.355 | 
		0.368 | 
		0.303 | 
		0.307 | 
		0.297 | 
		0.249 | 
		0.322 | 
		0.391 | 
		0.361 | 
		0.318 | 
		0.231 | 
		0.240 | 
		0.243 | 
	
	
		| salsa | 
		0.886 | 
		0.850 | 
		0.750 | 
		0.715 | 
		0.719 | 
		0.668 | 
		0.788 | 
		0.793 | 
		0.769 | 
		0.766 | 
		0.698 | 
		0.710 | 
		0.716 | 
	
	
		| sertaneja | 
		0.209 | 
		0.205 | 
		0.200 | 
		0.159 | 
		0.186 | 
		0.212 | 
		0.132 | 
		0.227 | 
		0.210 | 
		0.170 | 
		0.090 | 
		0.090 | 
		0.094 | 
	
	
		| tango | 
		0.590 | 
		0.587 | 
		0.585 | 
		0.588 | 
		0.588 | 
		0.582 | 
		0.592 | 
		0.581 | 
		0.586 | 
		0.590 | 
		0.588 | 
		0.588 | 
		0.588 | 
	
	
download these results as csv
MIREX 2008 Audio Genre Classification Evaluation Logs and Confusion Matrices
MIREX 2008 Audio Genre Classification Run Times
	
	
		| Participant | 
		Runtime (hh:mm) / Fold | 
	
	
		| CL1 | 
		Feat Ex: 00:47 Train/Classify: 0:13 | 
	
	
		| CL2 | 
		Feat Ex: 00:48 Train/Classify: 00:23 | 
	
	
		| GP1 | 
		Feat Ex: 07:12 Train/Classify: 00:15 | 
	
	
		| GT1 | 
		Feat Ex/Train/Classify: 00:16 | 
	
	
		| GT2 | 
		Feat Ex/Train/Classify: 00:17 | 
	
	
		| GT3 | 
		Feat Ex: 00:06 Train/Classify: 00:00 (6 sec) | 
	
	
		| LRPPI1 | 
		Feat Ex: 15:33 Train/Classify: 00:01 | 
	
	
		| LRPPI2 | 
		Feat Ex: 15:33 Train/Classify: 00:06 | 
	
	
		| LRPPI3 | 
		Feat Ex: 15:33 Train/Classify: 00:06 | 
	
	
		| LRPPI4 | 
		Feat Ex: 15:33 Train/Classify: 00:11 | 
	
	
		| ME1 | 
		Feat Ex: 1:58 Train/Classify: 00:00 (28 sec) | 
	
	
		| ME2 | 
		Feat Ex: 1:58 Train/Classify: 00:00 (28 sec) | 
	
	
		| ME3 | 
		Feat Ex: 1:58 Train/Classify: 00:00 (28 sec) | 
	
	
download these results as csv
CSV Files Without Rounding
audiolatin_results_fold.csv
audiolatin_results_class.csv
Results By Algorithm
(.tar.gz) 
CL1 = C. Cao, M. Li 1
CL2 = C. Cao, M. Li 2
GP1 = G. Peeters
GT1 = G. Tzanetakis
GT2 = G. Tzanetakis
GT3 = G. Tzanetakis
LRPPI1 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 1
LRPPI2 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 2
LRPPI3 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 3
LRPPI4 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 4
ME1 = I. M. Mandel, D. P. W. Ellis 1
ME2 = I. M. Mandel, D. P. W. Ellis 2
ME3 = I. M. Mandel, D. P. W. Ellis 3
Friedman's Test for Significant Differences
Task 1 (Mixed) Classes vs. Systems
The Friedman test was run in MATLAB against the average accuracy for each class.
Friedman's Anova Table
	
	
		| Source | 
		SS | 
		df | 
		MS | 
		Chi-sq | 
		Prob>Chi-sq | 
	
	
		| Columns | 
		243.6 | 
		10 | 
		24.36 | 
		22.15 | 
		0.0144 | 
	
	
		| Error | 
		856.4 | 
		90 | 
		9.5156 | 
		 | 
		 | 
	
	
		| Total | 
		1100 | 
		109 | 
		 | 
		 | 
		 | 
	
	
download these results as csv
Tukey-Kramer HSD Multi-Comparison
The Tukey-Kramer HSD multi-comparison data below was generated using the following MATLAB instruction.
Command: [c, m, h, gnames] = multicompare(stats, 'ctype', 'tukey-kramer', 'estimate', 'friedman', 'alpha', 0.05);
	
	
		| TeamID | 
		TeamID | 
		Lowerbound | 
		Mean | 
		Upperbound | 
		Significance | 
	
	
		| CL1 | 
		CL2 | 
		-5.5740 | 
		-0.8000 | 
		3.9740 | 
		FALSE | 
	
	
		| CL1 | 
		GP1 | 
		-5.1740 | 
		-0.4000 | 
		4.3740 | 
		FALSE | 
	
	
		| CL1 | 
		GT1 | 
		-5.0740 | 
		-0.3000 | 
		4.4740 | 
		FALSE | 
	
	
		| CL1 | 
		GT2 | 
		-3.3740 | 
		1.4000 | 
		6.1740 | 
		FALSE | 
	
	
		| CL1 | 
		GT3 | 
		-3.5740 | 
		1.2000 | 
		5.9740 | 
		FALSE | 
	
	
		| CL1 | 
		LRPPI1 | 
		-3.4740 | 
		1.3000 | 
		6.0740 | 
		FALSE | 
	
	
		| CL1 | 
		LRPPI2 | 
		-2.3740 | 
		2.4000 | 
		7.1740 | 
		FALSE | 
	
	
		| CL1 | 
		LRPPI3 | 
		-2.4740 | 
		2.3000 | 
		7.0740 | 
		FALSE | 
	
	
		| CL1 | 
		LRPPI4 | 
		-1.1740 | 
		3.6000 | 
		8.3740 | 
		FALSE | 
	
	
		| CL1 | 
		ME1 | 
		-1.1740 | 
		3.6000 | 
		8.3740 | 
		FALSE | 
	
	
		| CL2 | 
		GP1 | 
		-4.3740 | 
		0.4000 | 
		5.1740 | 
		FALSE | 
	
	
		| CL2 | 
		GT1 | 
		-4.2740 | 
		0.5000 | 
		5.2740 | 
		FALSE | 
	
	
		| CL2 | 
		GT2 | 
		-2.5740 | 
		2.2000 | 
		6.9740 | 
		FALSE | 
	
	
		| CL2 | 
		GT3 | 
		-2.7740 | 
		2.0000 | 
		6.7740 | 
		FALSE | 
	
	
		| CL2 | 
		LRPPI1 | 
		-2.6740 | 
		2.1000 | 
		6.8740 | 
		FALSE | 
	
	
		| CL2 | 
		LRPPI2 | 
		-1.5740 | 
		3.2000 | 
		7.9740 | 
		FALSE | 
	
	
		| CL2 | 
		LRPPI3 | 
		-1.6740 | 
		3.1000 | 
		7.8740 | 
		FALSE | 
	
	
		| CL2 | 
		LRPPI4 | 
		-0.3740 | 
		4.4000 | 
		9.1740 | 
		FALSE | 
	
	
		| CL2 | 
		ME1 | 
		-0.3740 | 
		4.4000 | 
		9.1740 | 
		FALSE | 
	
	
		| GP1 | 
		GT1 | 
		-4.6740 | 
		0.1000 | 
		4.8740 | 
		FALSE | 
	
	
		| GP1 | 
		GT2 | 
		-2.9740 | 
		1.8000 | 
		6.5740 | 
		FALSE | 
	
	
		| GP1 | 
		GT3 | 
		-3.1740 | 
		1.6000 | 
		6.3740 | 
		FALSE | 
	
	
		| GP1 | 
		LRPPI1 | 
		-3.0740 | 
		1.7000 | 
		6.4740 | 
		FALSE | 
	
	
		| GP1 | 
		LRPPI2 | 
		-1.9740 | 
		2.8000 | 
		7.5740 | 
		FALSE | 
	
	
		| GP1 | 
		LRPPI3 | 
		-2.0740 | 
		2.7000 | 
		7.4740 | 
		FALSE | 
	
	
		| GP1 | 
		LRPPI4 | 
		-0.7740 | 
		4.0000 | 
		8.7740 | 
		FALSE | 
	
	
		| GP1 | 
		ME1 | 
		-0.7740 | 
		4.0000 | 
		8.7740 | 
		FALSE | 
	
	
		| GT1 | 
		GT2 | 
		-3.0740 | 
		1.7000 | 
		6.4740 | 
		FALSE | 
	
	
		| GT1 | 
		GT3 | 
		-3.2740 | 
		1.5000 | 
		6.2740 | 
		FALSE | 
	
	
		| GT1 | 
		LRPPI1 | 
		-3.1740 | 
		1.6000 | 
		6.3740 | 
		FALSE | 
	
	
		| GT1 | 
		LRPPI2 | 
		-2.0740 | 
		2.7000 | 
		7.4740 | 
		FALSE | 
	
	
		| GT1 | 
		LRPPI3 | 
		-2.1740 | 
		2.6000 | 
		7.3740 | 
		FALSE | 
	
	
		| GT1 | 
		LRPPI4 | 
		-0.8740 | 
		3.9000 | 
		8.6740 | 
		FALSE | 
	
	
		| GT1 | 
		ME1 | 
		-0.8740 | 
		3.9000 | 
		8.6740 | 
		FALSE | 
	
	
		| GT2 | 
		GT3 | 
		-4.9740 | 
		-0.2000 | 
		4.5740 | 
		FALSE | 
	
	
		| GT2 | 
		LRPPI1 | 
		-4.8740 | 
		-0.1000 | 
		4.6740 | 
		FALSE | 
	
	
		| GT2 | 
		LRPPI2 | 
		-3.7740 | 
		1.0000 | 
		5.7740 | 
		FALSE | 
	
	
		| GT2 | 
		LRPPI3 | 
		-3.8740 | 
		0.9000 | 
		5.6740 | 
		FALSE | 
	
	
		| GT2 | 
		LRPPI4 | 
		-2.5740 | 
		2.2000 | 
		6.9740 | 
		FALSE | 
	
	
		| GT2 | 
		ME1 | 
		-2.5740 | 
		2.2000 | 
		6.9740 | 
		FALSE | 
	
	
		| GT3 | 
		LRPPI1 | 
		-4.6740 | 
		0.1000 | 
		4.8740 | 
		FALSE | 
	
	
		| GT3 | 
		LRPPI2 | 
		-3.5740 | 
		1.2000 | 
		5.9740 | 
		FALSE | 
	
	
		| GT3 | 
		LRPPI3 | 
		-3.6740 | 
		1.1000 | 
		5.8740 | 
		FALSE | 
	
	
		| GT3 | 
		LRPPI4 | 
		-2.3740 | 
		2.4000 | 
		7.1740 | 
		FALSE | 
	
	
		| GT3 | 
		ME1 | 
		-2.3740 | 
		2.4000 | 
		7.1740 | 
		FALSE | 
	
	
		| LRPPI1 | 
		LRPPI2 | 
		-3.6740 | 
		1.1000 | 
		5.8740 | 
		FALSE | 
	
	
		| LRPPI1 | 
		LRPPI3 | 
		-3.7740 | 
		1.0000 | 
		5.7740 | 
		FALSE | 
	
	
		| LRPPI1 | 
		LRPPI4 | 
		-2.4740 | 
		2.3000 | 
		7.0740 | 
		FALSE | 
	
	
		| LRPPI1 | 
		ME1 | 
		-2.4740 | 
		2.3000 | 
		7.0740 | 
		FALSE | 
	
	
		| LRPPI2 | 
		LRPPI3 | 
		-4.8740 | 
		-0.1000 | 
		4.6740 | 
		FALSE | 
	
	
		| LRPPI2 | 
		LRPPI4 | 
		-3.5740 | 
		1.2000 | 
		5.9740 | 
		FALSE | 
	
	
		| LRPPI2 | 
		ME1 | 
		-3.5740 | 
		1.2000 | 
		5.9740 | 
		FALSE | 
	
	
		| LRPPI3 | 
		LRPPI4 | 
		-3.4740 | 
		1.3000 | 
		6.0740 | 
		FALSE | 
	
	
		| LRPPI3 | 
		ME1 | 
		-3.4740 | 
		1.3000 | 
		6.0740 | 
		FALSE | 
	
	
		| LRPPI4 | 
		ME1 | 
		-4.7740 | 
		0.0000 | 
		4.7740 | 
		FALSE | 
	
	
download these results as csv
Task 1 (Mixed) Folds vs. Systems
The Friedman test was run in MATLAB against the accuracy for each fold.
Friedman's Anova Table
	
	
		| Source | 
		SS | 
		df | 
		MS | 
		Chi-sq | 
		Prob>Chi-sq | 
	
	
		| Columns | 
		255.333 | 
		10 | 
		25.5333 | 
		23.21 | 
		0.01 | 
	
	
		| Error | 
		74.667 | 
		20 | 
		3.7333 | 
		 | 
		 | 
	
	
		| Total | 
		330 | 
		32 | 
		 | 
		 | 
		 | 
	
	
download these results as csv
Tukey-Kramer HSD Multi-Comparison
The Tukey-Kramer HSD multi-comparison data below was generated using the following MATLAB instruction.
Command: [c, m, h, gnames] = multicompare(stats, 'ctype', 'tukey-kramer', 'estimate', 'friedman', 'alpha', 0.05);
	
	
		| TeamID | 
		TeamID | 
		Lowerbound | 
		Mean | 
		Upperbound | 
		Significance | 
	
	
		| CL1 | 
		CL2 | 
		-7.3828 | 
		1.3333 | 
		10.0495 | 
		FALSE | 
	
	
		| CL1 | 
		GP1 | 
		-6.7162 | 
		2.0000 | 
		10.7162 | 
		FALSE | 
	
	
		| CL1 | 
		GT1 | 
		-6.7162 | 
		2.0000 | 
		10.7162 | 
		FALSE | 
	
	
		| CL1 | 
		GT2 | 
		-6.0495 | 
		2.6667 | 
		11.3828 | 
		FALSE | 
	
	
		| CL1 | 
		GT3 | 
		-4.0495 | 
		4.6667 | 
		13.3828 | 
		FALSE | 
	
	
		| CL1 | 
		LRPPI1 | 
		-3.7162 | 
		5.0000 | 
		13.7162 | 
		FALSE | 
	
	
		| CL1 | 
		LRPPI2 | 
		-2.3828 | 
		6.3333 | 
		15.0495 | 
		FALSE | 
	
	
		| CL1 | 
		LRPPI3 | 
		-1.7162 | 
		7.0000 | 
		15.7162 | 
		FALSE | 
	
	
		| CL1 | 
		LRPPI4 | 
		-0.3828 | 
		8.3333 | 
		17.0495 | 
		FALSE | 
	
	
		| CL1 | 
		ME1 | 
		-0.3828 | 
		8.3333 | 
		17.0495 | 
		FALSE | 
	
	
		| CL2 | 
		GP1 | 
		-8.0495 | 
		0.6667 | 
		9.3828 | 
		FALSE | 
	
	
		| CL2 | 
		GT1 | 
		-8.0495 | 
		0.6667 | 
		9.3828 | 
		FALSE | 
	
	
		| CL2 | 
		GT2 | 
		-7.3828 | 
		1.3333 | 
		10.0495 | 
		FALSE | 
	
	
		| CL2 | 
		GT3 | 
		-5.3828 | 
		3.3333 | 
		12.0495 | 
		FALSE | 
	
	
		| CL2 | 
		LRPPI1 | 
		-5.0495 | 
		3.6667 | 
		12.3828 | 
		FALSE | 
	
	
		| CL2 | 
		LRPPI2 | 
		-3.7162 | 
		5.0000 | 
		13.7162 | 
		FALSE | 
	
	
		| CL2 | 
		LRPPI3 | 
		-3.0495 | 
		5.6667 | 
		14.3828 | 
		FALSE | 
	
	
		| CL2 | 
		LRPPI4 | 
		-1.7162 | 
		7.0000 | 
		15.7162 | 
		FALSE | 
	
	
		| CL2 | 
		ME1 | 
		-1.7162 | 
		7.0000 | 
		15.7162 | 
		FALSE | 
	
	
		| GP1 | 
		GT1 | 
		-8.7162 | 
		0.0000 | 
		8.7162 | 
		FALSE | 
	
	
		| GP1 | 
		GT2 | 
		-8.0495 | 
		0.6667 | 
		9.3828 | 
		FALSE | 
	
	
		| GP1 | 
		GT3 | 
		-6.0495 | 
		2.6667 | 
		11.3828 | 
		FALSE | 
	
	
		| GP1 | 
		LRPPI1 | 
		-5.7162 | 
		3.0000 | 
		11.7162 | 
		FALSE | 
	
	
		| GP1 | 
		LRPPI2 | 
		-4.3828 | 
		4.3333 | 
		13.0495 | 
		FALSE | 
	
	
		| GP1 | 
		LRPPI3 | 
		-3.7162 | 
		5.0000 | 
		13.7162 | 
		FALSE | 
	
	
		| GP1 | 
		LRPPI4 | 
		-2.3828 | 
		6.3333 | 
		15.0495 | 
		FALSE | 
	
	
		| GP1 | 
		ME1 | 
		-2.3828 | 
		6.3333 | 
		15.0495 | 
		FALSE | 
	
	
		| GT1 | 
		GT2 | 
		-8.0495 | 
		0.6667 | 
		9.3828 | 
		FALSE | 
	
	
		| GT1 | 
		GT3 | 
		-6.0495 | 
		2.6667 | 
		11.3828 | 
		FALSE | 
	
	
		| GT1 | 
		LRPPI1 | 
		-5.7162 | 
		3.0000 | 
		11.7162 | 
		FALSE | 
	
	
		| GT1 | 
		LRPPI2 | 
		-4.3828 | 
		4.3333 | 
		13.0495 | 
		FALSE | 
	
	
		| GT1 | 
		LRPPI3 | 
		-3.7162 | 
		5.0000 | 
		13.7162 | 
		FALSE | 
	
	
		| GT1 | 
		LRPPI4 | 
		-2.3828 | 
		6.3333 | 
		15.0495 | 
		FALSE | 
	
	
		| GT1 | 
		ME1 | 
		-2.3828 | 
		6.3333 | 
		15.0495 | 
		FALSE | 
	
	
		| GT2 | 
		GT3 | 
		-6.7162 | 
		2.0000 | 
		10.7162 | 
		FALSE | 
	
	
		| GT2 | 
		LRPPI1 | 
		-6.3828 | 
		2.3333 | 
		11.0495 | 
		FALSE | 
	
	
		| GT2 | 
		LRPPI2 | 
		-5.0495 | 
		3.6667 | 
		12.3828 | 
		FALSE | 
	
	
		| GT2 | 
		LRPPI3 | 
		-4.3828 | 
		4.3333 | 
		13.0495 | 
		FALSE | 
	
	
		| GT2 | 
		LRPPI4 | 
		-3.0495 | 
		5.6667 | 
		14.3828 | 
		FALSE | 
	
	
		| GT2 | 
		ME1 | 
		-3.0495 | 
		5.6667 | 
		14.3828 | 
		FALSE | 
	
	
		| GT3 | 
		LRPPI1 | 
		-8.3828 | 
		0.3333 | 
		9.0495 | 
		FALSE | 
	
	
		| GT3 | 
		LRPPI2 | 
		-7.0495 | 
		1.6667 | 
		10.3828 | 
		FALSE | 
	
	
		| GT3 | 
		LRPPI3 | 
		-6.3828 | 
		2.3333 | 
		11.0495 | 
		FALSE | 
	
	
		| GT3 | 
		LRPPI4 | 
		-5.0495 | 
		3.6667 | 
		12.3828 | 
		FALSE | 
	
	
		| GT3 | 
		ME1 | 
		-5.0495 | 
		3.6667 | 
		12.3828 | 
		FALSE | 
	
	
		| LRPPI1 | 
		LRPPI2 | 
		-7.3828 | 
		1.3333 | 
		10.0495 | 
		FALSE | 
	
	
		| LRPPI1 | 
		LRPPI3 | 
		-6.7162 | 
		2.0000 | 
		10.7162 | 
		FALSE | 
	
	
		| LRPPI1 | 
		LRPPI4 | 
		-5.3828 | 
		3.3333 | 
		12.0495 | 
		FALSE | 
	
	
		| LRPPI1 | 
		ME1 | 
		-5.3828 | 
		3.3333 | 
		12.0495 | 
		FALSE | 
	
	
		| LRPPI2 | 
		LRPPI3 | 
		-8.0495 | 
		0.6667 | 
		9.3828 | 
		FALSE | 
	
	
		| LRPPI2 | 
		LRPPI4 | 
		-6.7162 | 
		2.0000 | 
		10.7162 | 
		FALSE | 
	
	
		| LRPPI2 | 
		ME1 | 
		-6.7162 | 
		2.0000 | 
		10.7162 | 
		FALSE | 
	
	
		| LRPPI3 | 
		LRPPI4 | 
		-7.3828 | 
		1.3333 | 
		10.0495 | 
		FALSE | 
	
	
		| LRPPI3 | 
		ME1 | 
		-7.3828 | 
		1.3333 | 
		10.0495 | 
		FALSE | 
	
	
		| LRPPI4 | 
		ME1 | 
		-8.7162 | 
		0.0000 | 
		8.7162 | 
		FALSE | 
	
	
download these results as csv
Task 2 (Latin) Classes vs. Systems
The Friedman test was run in MATLAB against the average accuracy for each class.
Friedman's Anova Table
	
	
		| Source | 
		SS | 
		df | 
		MS | 
		Chi-sq | 
		Prob>Chi-sq | 
	
	
		| Columns | 
		235 | 
		10 | 
		23.5 | 
		21.38 | 
		0.0186 | 
	
	
		| Error | 
		864 | 
		90 | 
		9.6 | 
		 | 
		 | 
	
	
		| Total | 
		1099 | 
		109 | 
		 | 
		 | 
		 | 
	
	
download these results as csv
Tukey-Kramer HSD Multi-Comparison
The Tukey-Kramer HSD multi-comparison data below was generated using the following MATLAB instruction.
Command: [c, m, h, gnames] = multicompare(stats, 'ctype', 'tukey-kramer', 'estimate', 'friedman', 'alpha', 0.05);
	
	
		| TeamID | 
		TeamID | 
		Lowerbound | 
		Mean | 
		Upperbound | 
		Significance | 
	
	
		| CL1 | 
		CL2 | 
		-3.7219 | 
		1.0500 | 
		5.8219 | 
		FALSE | 
	
	
		| CL1 | 
		GP1 | 
		-3.2219 | 
		1.5500 | 
		6.3219 | 
		FALSE | 
	
	
		| CL1 | 
		GT1 | 
		-2.3219 | 
		2.4500 | 
		7.2219 | 
		FALSE | 
	
	
		| CL1 | 
		GT2 | 
		-1.7219 | 
		3.0500 | 
		7.8219 | 
		FALSE | 
	
	
		| CL1 | 
		GT3 | 
		-1.7719 | 
		3.0000 | 
		7.7719 | 
		FALSE | 
	
	
		| CL1 | 
		LRPPI1 | 
		-2.1219 | 
		2.6500 | 
		7.4219 | 
		FALSE | 
	
	
		| CL1 | 
		LRPPI2 | 
		-0.2219 | 
		4.5500 | 
		9.3219 | 
		FALSE | 
	
	
		| CL1 | 
		LRPPI3 | 
		-0.7719 | 
		4.0000 | 
		8.7719 | 
		FALSE | 
	
	
		| CL1 | 
		LRPPI4 | 
		-0.6719 | 
		4.1000 | 
		8.8719 | 
		FALSE | 
	
	
		| CL1 | 
		ME1 | 
		0.1781 | 
		4.9500 | 
		9.7219 | 
		TRUE | 
	
	
		| CL2 | 
		GP1 | 
		-4.2719 | 
		0.5000 | 
		5.2719 | 
		FALSE | 
	
	
		| CL2 | 
		GT1 | 
		-3.3719 | 
		1.4000 | 
		6.1719 | 
		FALSE | 
	
	
		| CL2 | 
		GT2 | 
		-2.7719 | 
		2.0000 | 
		6.7719 | 
		FALSE | 
	
	
		| CL2 | 
		GT3 | 
		-2.8219 | 
		1.9500 | 
		6.7219 | 
		FALSE | 
	
	
		| CL2 | 
		LRPPI1 | 
		-3.1719 | 
		1.6000 | 
		6.3719 | 
		FALSE | 
	
	
		| CL2 | 
		LRPPI2 | 
		-1.2719 | 
		3.5000 | 
		8.2719 | 
		FALSE | 
	
	
		| CL2 | 
		LRPPI3 | 
		-1.8219 | 
		2.9500 | 
		7.7219 | 
		FALSE | 
	
	
		| CL2 | 
		LRPPI4 | 
		-1.7219 | 
		3.0500 | 
		7.8219 | 
		FALSE | 
	
	
		| CL2 | 
		ME1 | 
		-0.8719 | 
		3.9000 | 
		8.6719 | 
		FALSE | 
	
	
		| GP1 | 
		GT1 | 
		-3.8719 | 
		0.9000 | 
		5.6719 | 
		FALSE | 
	
	
		| GP1 | 
		GT2 | 
		-3.2719 | 
		1.5000 | 
		6.2719 | 
		FALSE | 
	
	
		| GP1 | 
		GT3 | 
		-3.3219 | 
		1.4500 | 
		6.2219 | 
		FALSE | 
	
	
		| GP1 | 
		LRPPI1 | 
		-3.6719 | 
		1.1000 | 
		5.8719 | 
		FALSE | 
	
	
		| GP1 | 
		LRPPI2 | 
		-1.7719 | 
		3.0000 | 
		7.7719 | 
		FALSE | 
	
	
		| GP1 | 
		LRPPI3 | 
		-2.3219 | 
		2.4500 | 
		7.2219 | 
		FALSE | 
	
	
		| GP1 | 
		LRPPI4 | 
		-2.2219 | 
		2.5500 | 
		7.3219 | 
		FALSE | 
	
	
		| GP1 | 
		ME1 | 
		-1.3719 | 
		3.4000 | 
		8.1719 | 
		FALSE | 
	
	
		| GT1 | 
		GT2 | 
		-4.1719 | 
		0.6000 | 
		5.3719 | 
		FALSE | 
	
	
		| GT1 | 
		GT3 | 
		-4.2219 | 
		0.5500 | 
		5.3219 | 
		FALSE | 
	
	
		| GT1 | 
		LRPPI1 | 
		-4.5719 | 
		0.2000 | 
		4.9719 | 
		FALSE | 
	
	
		| GT1 | 
		LRPPI2 | 
		-2.6719 | 
		2.1000 | 
		6.8719 | 
		FALSE | 
	
	
		| GT1 | 
		LRPPI3 | 
		-3.2219 | 
		1.5500 | 
		6.3219 | 
		FALSE | 
	
	
		| GT1 | 
		LRPPI4 | 
		-3.1219 | 
		1.6500 | 
		6.4219 | 
		FALSE | 
	
	
		| GT1 | 
		ME1 | 
		-2.2719 | 
		2.5000 | 
		7.2719 | 
		FALSE | 
	
	
		| GT2 | 
		GT3 | 
		-4.8219 | 
		-0.0500 | 
		4.7219 | 
		FALSE | 
	
	
		| GT2 | 
		LRPPI1 | 
		-5.1719 | 
		-0.4000 | 
		4.3719 | 
		FALSE | 
	
	
		| GT2 | 
		LRPPI2 | 
		-3.2719 | 
		1.5000 | 
		6.2719 | 
		FALSE | 
	
	
		| GT2 | 
		LRPPI3 | 
		-3.8219 | 
		0.9500 | 
		5.7219 | 
		FALSE | 
	
	
		| GT2 | 
		LRPPI4 | 
		-3.7219 | 
		1.0500 | 
		5.8219 | 
		FALSE | 
	
	
		| GT2 | 
		ME1 | 
		-2.8719 | 
		1.9000 | 
		6.6719 | 
		FALSE | 
	
	
		| GT3 | 
		LRPPI1 | 
		-5.1219 | 
		-0.3500 | 
		4.4219 | 
		FALSE | 
	
	
		| GT3 | 
		LRPPI2 | 
		-3.2219 | 
		1.5500 | 
		6.3219 | 
		FALSE | 
	
	
		| GT3 | 
		LRPPI3 | 
		-3.7719 | 
		1.0000 | 
		5.7719 | 
		FALSE | 
	
	
		| GT3 | 
		LRPPI4 | 
		-3.6719 | 
		1.1000 | 
		5.8719 | 
		FALSE | 
	
	
		| GT3 | 
		ME1 | 
		-2.8219 | 
		1.9500 | 
		6.7219 | 
		FALSE | 
	
	
		| LRPPI1 | 
		LRPPI2 | 
		-2.8719 | 
		1.9000 | 
		6.6719 | 
		FALSE | 
	
	
		| LRPPI1 | 
		LRPPI3 | 
		-3.4219 | 
		1.3500 | 
		6.1219 | 
		FALSE | 
	
	
		| LRPPI1 | 
		LRPPI4 | 
		-3.3219 | 
		1.4500 | 
		6.2219 | 
		FALSE | 
	
	
		| LRPPI1 | 
		ME1 | 
		-2.4719 | 
		2.3000 | 
		7.0719 | 
		FALSE | 
	
	
		| LRPPI2 | 
		LRPPI3 | 
		-5.3219 | 
		-0.5500 | 
		4.2219 | 
		FALSE | 
	
	
		| LRPPI2 | 
		LRPPI4 | 
		-5.2219 | 
		-0.4500 | 
		4.3219 | 
		FALSE | 
	
	
		| LRPPI2 | 
		ME1 | 
		-4.3719 | 
		0.4000 | 
		5.1719 | 
		FALSE | 
	
	
		| LRPPI3 | 
		LRPPI4 | 
		-4.6719 | 
		0.1000 | 
		4.8719 | 
		FALSE | 
	
	
		| LRPPI3 | 
		ME1 | 
		-3.8219 | 
		0.9500 | 
		5.7219 | 
		FALSE | 
	
	
		| LRPPI4 | 
		ME1 | 
		-3.9219 | 
		0.8500 | 
		5.6219 | 
		FALSE | 
	
	
download these results as csv
Task 2 (Latin) Folds vs. Systems
The Friedman test was run in MATLAB against the accuracy for each fold.
Friedman's Anova Table
	
	
		| Source | 
		SS | 
		df | 
		MS | 
		Chi-sq | 
		Prob>Chi-sq | 
	
	
		| Columns | 
		265.833 | 
		10 | 
		26.5833 | 
		24.2 | 
		0.0071 | 
	
	
		| Error | 
		63.667 | 
		20 | 
		3.1833 | 
		 | 
		 | 
	
	
		| Total | 
		329.5 | 
		32 | 
		 | 
		 | 
		 | 
	
	
download these results as csv
Tukey-Kramer HSD Multi-Comparison
The Tukey-Kramer HSD multi-comparison data below was generated using the following MATLAB instruction.
Command: [c, m, h, gnames] = multicompare(stats, 'ctype', 'tukey-kramer', 'estimate', 'friedman', 'alpha', 0.05);
	
	
		| TeamID | 
		TeamID | 
		Lowerbound | 
		Mean | 
		Upperbound | 
		Significance | 
	
	
		| CL1 | 
		CL2 | 
		-7.7095 | 
		1.0000 | 
		9.7095 | 
		FALSE | 
	
	
		| CL1 | 
		GP1 | 
		-7.3762 | 
		1.3333 | 
		10.0429 | 
		FALSE | 
	
	
		| CL1 | 
		GT1 | 
		-7.7095 | 
		1.0000 | 
		9.7095 | 
		FALSE | 
	
	
		| CL1 | 
		GT2 | 
		-4.0429 | 
		4.6667 | 
		13.3762 | 
		FALSE | 
	
	
		| CL1 | 
		GT3 | 
		-3.7095 | 
		5.0000 | 
		13.7095 | 
		FALSE | 
	
	
		| CL1 | 
		LRPPI1 | 
		-3.0429 | 
		5.6667 | 
		14.3762 | 
		FALSE | 
	
	
		| CL1 | 
		LRPPI2 | 
		-2.3762 | 
		6.3333 | 
		15.0429 | 
		FALSE | 
	
	
		| CL1 | 
		LRPPI3 | 
		-1.8762 | 
		6.8333 | 
		15.5429 | 
		FALSE | 
	
	
		| CL1 | 
		LRPPI4 | 
		-0.3762 | 
		8.3333 | 
		17.0429 | 
		FALSE | 
	
	
		| CL1 | 
		ME1 | 
		-1.2095 | 
		7.5000 | 
		16.2095 | 
		FALSE | 
	
	
		| CL2 | 
		GP1 | 
		-8.3762 | 
		0.3333 | 
		9.0429 | 
		FALSE | 
	
	
		| CL2 | 
		GT1 | 
		-8.7095 | 
		0.0000 | 
		8.7095 | 
		FALSE | 
	
	
		| CL2 | 
		GT2 | 
		-5.0429 | 
		3.6667 | 
		12.3762 | 
		FALSE | 
	
	
		| CL2 | 
		GT3 | 
		-4.7095 | 
		4.0000 | 
		12.7095 | 
		FALSE | 
	
	
		| CL2 | 
		LRPPI1 | 
		-4.0429 | 
		4.6667 | 
		13.3762 | 
		FALSE | 
	
	
		| CL2 | 
		LRPPI2 | 
		-3.3762 | 
		5.3333 | 
		14.0429 | 
		FALSE | 
	
	
		| CL2 | 
		LRPPI3 | 
		-2.8762 | 
		5.8333 | 
		14.5429 | 
		FALSE | 
	
	
		| CL2 | 
		LRPPI4 | 
		-1.3762 | 
		7.3333 | 
		16.0429 | 
		FALSE | 
	
	
		| CL2 | 
		ME1 | 
		-2.2095 | 
		6.5000 | 
		15.2095 | 
		FALSE | 
	
	
		| GP1 | 
		GT1 | 
		-9.0429 | 
		-0.3333 | 
		8.3762 | 
		FALSE | 
	
	
		| GP1 | 
		GT2 | 
		-5.3762 | 
		3.3333 | 
		12.0429 | 
		FALSE | 
	
	
		| GP1 | 
		GT3 | 
		-5.0429 | 
		3.6667 | 
		12.3762 | 
		FALSE | 
	
	
		| GP1 | 
		LRPPI1 | 
		-4.3762 | 
		4.3333 | 
		13.0429 | 
		FALSE | 
	
	
		| GP1 | 
		LRPPI2 | 
		-3.7095 | 
		5.0000 | 
		13.7095 | 
		FALSE | 
	
	
		| GP1 | 
		LRPPI3 | 
		-3.2095 | 
		5.5000 | 
		14.2095 | 
		FALSE | 
	
	
		| GP1 | 
		LRPPI4 | 
		-1.7095 | 
		7.0000 | 
		15.7095 | 
		FALSE | 
	
	
		| GP1 | 
		ME1 | 
		-2.5429 | 
		6.1667 | 
		14.8762 | 
		FALSE | 
	
	
		| GT1 | 
		GT2 | 
		-5.0429 | 
		3.6667 | 
		12.3762 | 
		FALSE | 
	
	
		| GT1 | 
		GT3 | 
		-4.7095 | 
		4.0000 | 
		12.7095 | 
		FALSE | 
	
	
		| GT1 | 
		LRPPI1 | 
		-4.0429 | 
		4.6667 | 
		13.3762 | 
		FALSE | 
	
	
		| GT1 | 
		LRPPI2 | 
		-3.3762 | 
		5.3333 | 
		14.0429 | 
		FALSE | 
	
	
		| GT1 | 
		LRPPI3 | 
		-2.8762 | 
		5.8333 | 
		14.5429 | 
		FALSE | 
	
	
		| GT1 | 
		LRPPI4 | 
		-1.3762 | 
		7.3333 | 
		16.0429 | 
		FALSE | 
	
	
		| GT1 | 
		ME1 | 
		-2.2095 | 
		6.5000 | 
		15.2095 | 
		FALSE | 
	
	
		| GT2 | 
		GT3 | 
		-8.3762 | 
		0.3333 | 
		9.0429 | 
		FALSE | 
	
	
		| GT2 | 
		LRPPI1 | 
		-7.7095 | 
		1.0000 | 
		9.7095 | 
		FALSE | 
	
	
		| GT2 | 
		LRPPI2 | 
		-7.0429 | 
		1.6667 | 
		10.3762 | 
		FALSE | 
	
	
		| GT2 | 
		LRPPI3 | 
		-6.5429 | 
		2.1667 | 
		10.8762 | 
		FALSE | 
	
	
		| GT2 | 
		LRPPI4 | 
		-5.0429 | 
		3.6667 | 
		12.3762 | 
		FALSE | 
	
	
		| GT2 | 
		ME1 | 
		-5.8762 | 
		2.8333 | 
		11.5429 | 
		FALSE | 
	
	
		| GT3 | 
		LRPPI1 | 
		-8.0429 | 
		0.6667 | 
		9.3762 | 
		FALSE | 
	
	
		| GT3 | 
		LRPPI2 | 
		-7.3762 | 
		1.3333 | 
		10.0429 | 
		FALSE | 
	
	
		| GT3 | 
		LRPPI3 | 
		-6.8762 | 
		1.8333 | 
		10.5429 | 
		FALSE | 
	
	
		| GT3 | 
		LRPPI4 | 
		-5.3762 | 
		3.3333 | 
		12.0429 | 
		FALSE | 
	
	
		| GT3 | 
		ME1 | 
		-6.2095 | 
		2.5000 | 
		11.2095 | 
		FALSE | 
	
	
		| LRPPI1 | 
		LRPPI2 | 
		-8.0429 | 
		0.6667 | 
		9.3762 | 
		FALSE | 
	
	
		| LRPPI1 | 
		LRPPI3 | 
		-7.5429 | 
		1.1667 | 
		9.8762 | 
		FALSE | 
	
	
		| LRPPI1 | 
		LRPPI4 | 
		-6.0429 | 
		2.6667 | 
		11.3762 | 
		FALSE | 
	
	
		| LRPPI1 | 
		ME1 | 
		-6.8762 | 
		1.8333 | 
		10.5429 | 
		FALSE | 
	
	
		| LRPPI2 | 
		LRPPI3 | 
		-8.2095 | 
		0.5000 | 
		9.2095 | 
		FALSE | 
	
	
		| LRPPI2 | 
		LRPPI4 | 
		-6.7095 | 
		2.0000 | 
		10.7095 | 
		FALSE | 
	
	
		| LRPPI2 | 
		ME1 | 
		-7.5429 | 
		1.1667 | 
		9.8762 | 
		FALSE | 
	
	
		| LRPPI3 | 
		LRPPI4 | 
		-7.2095 | 
		1.5000 | 
		10.2095 | 
		FALSE | 
	
	
		| LRPPI3 | 
		ME1 | 
		-8.0429 | 
		0.6667 | 
		9.3762 | 
		FALSE | 
	
	
		| LRPPI4 | 
		ME1 | 
		-9.5429 | 
		-0.8333 | 
		7.8762 | 
		FALSE | 
	
	
download these results as csv