Submitted Algorithms
Algorithms submitted to the Automatic Downbeat Estimation task
Submission code
|
Submission name
|
Abstract
|
Contributors
|
|
|
DBDR1
|
DB1_no_beatles |
PDF |
Simon Durand, Juan Bello, Bertrand David, Gael Richard
|
DBDR2
|
DB2_no_ballroom |
PDF |
Simon Durand, Juan Bello, Bertrand David, Gael Richard
|
KB1
|
babeats13 |
PDF |
Florian Krebs, Sebastian Böck
|
KB2
|
babeats15 |
PDF |
Florian Krebs, Sebastian Böck
|
BK4
|
joint_tracker |
PDF |
Sebastian Böck, Florian Krebs
|
DSR1
|
downbeater |
PDF |
Matthew Davies, Adam Stark, Andrew Robertson
|
CD4
|
qm-barbeattracker |
PDF |
Matthew Davies, Chris Cannam
|
Results
Results ballroom dataset
Algorithm
|
F-Measure
|
Precision
|
Recall
|
BK4*
|
0.908
|
0.906
|
0.917
|
KB1*
|
0.898
|
0.888
|
0.917
|
KB2*
|
0.860
|
0.853
|
0.890
|
DBDR1*
|
0.838
|
0.874
|
0.846
|
DBDR2
|
0.783
|
0.808
|
0.804
|
DSR1
|
0.463
|
0.476
|
0.468
|
CD4
|
0.412
|
0.416
|
0.419
|
Results beatles dataset
Algorithm
|
F-Measure
|
Precision
|
Recall
|
DBDR2*
|
0.872
|
0.861
|
0.909
|
BK4*
|
0.865
|
0.872
|
0.876
|
DBDR1
|
0.849
|
0.861
|
0.868
|
KB2*
|
0.818
|
0.799
|
0.870
|
KB1
|
0.803
|
0.776
|
0.859
|
DSR1
|
0.665
|
0.646
|
0.708
|
CD4
|
0.604
|
0.586
|
0.642
|
Results carnatic dataset
Algorithm
|
F-Measure
|
Precision
|
Recall
|
BK4*
|
0.369
|
0.290
|
0.566
|
KB2*
|
0.330
|
0.263
|
0.487
|
KB1
|
0.269
|
0.221
|
0.380
|
DBDR2
|
0.231
|
0.194
|
0.330
|
DBDR1
|
0.201
|
0.199
|
0.240
|
CD4
|
0.186
|
0.154
|
0.258
|
DSR1
|
0.184
|
0.155
|
0.251
|
Results turkish dataset
Algorithm
|
F-Measure
|
Precision
|
Recall
|
BK4*
|
0.537
|
0.468
|
0.729
|
DBDR2
|
0.415
|
0.360
|
0.554
|
KB1
|
0.352
|
0.301
|
0.498
|
KB2*
|
0.336
|
0.269
|
0.513
|
DSR1
|
0.317
|
0.281
|
0.411
|
DBDR1
|
0.306
|
0.292
|
0.379
|
CD4
|
0.218
|
0.186
|
0.291
|
Results cretan dataset
Algorithm
|
F-Measure
|
Precision
|
Recall
|
BK4*
|
0.635
|
0.951
|
0.476
|
KB2*
|
0.443
|
0.661
|
0.334
|
KB1
|
0.433
|
0.641
|
0.328
|
DBDR1
|
0.426
|
0.715
|
0.308
|
DBDR2
|
0.418
|
0.637
|
0.311
|
DSR1
|
0.265
|
0.398
|
0.199
|
CD4
|
0.250
|
0.377
|
0.188
|
Results hjdb dataset
Algorithm
|
F-Measure
|
Precision
|
Recall
|
BK4*
|
0.970
|
0.970
|
0.970
|
KB2*
|
0.851
|
0.854
|
0.848
|
KB1
|
0.690
|
0.693
|
0.688
|
DBDR2
|
0.629
|
0.628
|
0.638
|
DBDR1
|
0.578
|
0.613
|
0.561
|
CD4
|
0.334
|
0.341
|
0.329
|
DSR1
|
0.208
|
0.232
|
0.196
|
Results rwc_classical dataset
Algorithm
|
F-Measure
|
Precision
|
Recall
|
BK4*
|
0.599
|
0.659
|
0.598
|
DBDR2*
|
0.532
|
0.539
|
0.574
|
DBDR1*
|
0.527
|
0.570
|
0.529
|
KB1
|
0.436
|
0.475
|
0.447
|
KB2*
|
0.428
|
0.459
|
0.444
|
DSR1
|
0.251
|
0.260
|
0.279
|
CD4
|
0.174
|
0.189
|
0.185
|
Results gtzan dataset
Algorithm
|
F-Measure
|
Precision
|
Recall
|
KB2
|
0.647
|
0.665
|
0.653
|
BK4
|
0.638
|
0.636
|
0.669
|
KB1
|
0.630
|
0.647
|
0.634
|
DBDR2
|
0.619
|
0.628
|
0.666
|
DBDR1
|
0.615
|
0.651
|
0.631
|
CD4
|
0.460
|
0.461
|
0.482
|
DSR1
|
0.397
|
0.397
|
0.423
|
*) Rows marked by an asterisk should be taken with care as in those cases overlapping test and training sets were used. This could lead to overestimated metrics.
Runtime
The runtime is measured for the *hjdb* dataset (duration 3h19m) and then extrapolated to the duration of all datasets (total 38h51m).
Algorithm
|
Multi-core
|
Runtime hjdb [mm]
|
Extrapolated runtime all [hh]
|
x faster than realtime
|
DBDRx
|
yes
|
86.8
|
16.9
|
2.29
|
KB1
|
yes
|
22.8
|
4.45
|
8.72
|
BK4
|
yes
|
13.1
|
2.55
|
15.2
|
DSR1
|
no
|
4.5
|
0.88
|
44.2
|
CD4
|
no
|
3.1
|
0.6
|
63.5
|