Difference between revisions of "2005:Symbolic Genre Classification Results"

From MIREX Wiki
(Introduction)
(Overall)
Line 9: Line 9:
  
 
===Overall===
 
===Overall===
{| border="1"
+
{| border="1" cellspacing="0"
 
|- style="background: yellow; text-align: center;"
 
|- style="background: yellow; text-align: center;"
 
! colspan="4" | OVERALL  
 
! colspan="4" | OVERALL  
Line 20: Line 20:
 
|1
 
|1
 
|[https://www.music-ir.org/mirex/abstracts/2005/mckay.pdf McKay & Fujinaga]
 
|[https://www.music-ir.org/mirex/abstracts/2005/mckay.pdf McKay & Fujinaga]
|77.17%
+
|align="right " | 77.17%
|65.28%
+
|align="right " | 65.28%
 
|----
 
|----
 
|2
 
|2
 
|[https://www.music-ir.org/mirex/abstracts/2005/basili.pdf Basili, Serafini, & Stellato (NB)]
 
|[https://www.music-ir.org/mirex/abstracts/2005/basili.pdf Basili, Serafini, & Stellato (NB)]
|72.08%
+
|align="right " | 72.08%
|58.53%
+
|align="right " | 58.53%
 
|----
 
|----
 
|3
 
|3
 
|Li, M.
 
|Li, M.
|67.57%
+
|align="right " | 67.57%
|55.90%
+
|align="right " | 55.90%
 
|----
 
|----
 
|4
 
|4
 
|[https://www.music-ir.org/mirex/abstracts/2005/basili.pdf Basili, Serafini, & Stellato (J48)]
 
|[https://www.music-ir.org/mirex/abstracts/2005/basili.pdf Basili, Serafini, & Stellato (J48)]
|67.14%
+
|align="right " | 67.14%
|53.14%
+
|align="right " | 53.14%
 
|----
 
|----
 
|5
 
|5
 
|[https://www.music-ir.org/mirex/abstracts/2005/ponce.pdf Ponce de Leon & Inesta]
 
|[https://www.music-ir.org/mirex/abstracts/2005/ponce.pdf Ponce de Leon & Inesta]
|37.76%
+
|align="right " | 37.76%
|26.52%
+
|align="right " | 26.52%
 
|----
 
|----
 
|}
 
|}

Revision as of 16:11, 2 August 2010

Introduction

Goal

To classify MIDI recordings into genre categories.

Dataset

Two sets of genre categories were used, one consisting of 38 categories and one consisting of 9 categories. Each category was represented by 25 MIDI files.Thus, the 38 genre test contained 950 MIDI files and the 9 genre test contained 225 MIDI files.Test runs were 3-fold cross validated with each algorithm tested using identical training and testing data splits.

Results

Overall

OVERALL
Rank Participant Mean Hierarchical Classification Accuracy Mean Raw Classification Accuracy
1 McKay & Fujinaga 77.17% 65.28%
2 Basili, Serafini, & Stellato (NB) 72.08% 58.53%
3 Li, M. 67.57% 55.90%
4 Basili, Serafini, & Stellato (J48) 67.14% 53.14%
5 Ponce de Leon & Inesta 37.76% 26.52%

38 Classes

38 Classes
Rank Participant Hierarchical Classification Accuracy Hierarchical Classification Accuracy Std Raw Classification Accuracy Raw Classification Accuracy Std Runtime (s) Machine Confusion Matrix Files
1 McKay & Fujinaga 64.33% 1.04 46.11% 1.51 3 days R MF_38eval.txt
2 Basili, Serafini, & Stellato (NB) 62.60% 0.26 45.05% 0.55 N/A N/A BST_NB_38eval.txt
3 Basili, Serafini, & Stellato (J48) 57.61% 1.14 40.95% 1.35 N/A N/A BST_J48_38eval.txt
4 Li, M. 54.91% 0.66 39.79% 0.87 15,948 G L_38eval.txt
5 Ponce de Leon & Inesta 24.84% 1.40 15.26% 1.13 821 L PI_38eval.txt

9 Classes

9 Classes
Rank Participant Hierarchical Classification Accuracy Hierarchical Classification Accuracy Std Raw Classification Accuracy Raw Classification Accuracy Std Runtime (s) Machine Confusion Matrix Files
1 McKay & Fujinaga 90.00% 0.60 84.44% 1.41 18,375 R MF_9eval.txt
2 Basili, Serafini, & Stellato (NB) 81.56% 0.76 72.00% 0.88 N/A N/A BST_NB_9eval.txt
3 Li, M. 80.22% 1.47 72.00% 2.31 3,777 G L_9eval.txt
4 Basili, Serafini, & Stellato (J48) 76.67% 1.11 65.33% 1.65 N/A N/A BST_J48_9eval.txt
5 Ponce de Leon & Inesta 50.67% 1.26 37.78% 2.30 197 L PI_9eval.txt