Difference between revisions of "2005:Audio Genre Classification Results"

From MIREX Wiki
(Created page with ''''Goal:''' To classify polyphonic music audio (in PCM format) into genre categories. '''Dataset:''' Two sets of data were used: Magnatune and USPOP. The Magnatune dataset has …')
 
Line 11: Line 11:
 
|-
 
|-
 
| USPOP || 28.4 GB || 940 || 474  
 
| USPOP || 28.4 GB || 940 || 474  
 +
|-
 +
|}
 +
 +
<br>
 +
{| border="1"
 +
|- style="background: yellow; text-align: center;"
 +
! colspan="3" | OVERALL
 +
|-style="background: yellow;"
 +
! Rank !! Participant !! Mean of Magnatune Hierarchical Classification Accuracy and USPOP Raw Classification Accuracy 
 +
|-
 +
| 1 || Bergstra, Casagrande & Eck (2) || 82.34%
 +
|-
 +
| 2 || Bergstra, Casagrande & Eck (1) || 81.77%
 +
|-
 +
| 3 || Mandel & Ellis || 78.81%
 +
|-
 +
| 4 || West, K. || 75.29%
 +
|-
 +
| 5 || Lidy & Rauber (SSD+RH) || 75.27%
 +
|-
 +
| 6 || Pampalk, E. || 75.14%
 +
|-
 +
| 7 || Lidy & Rauber (RP+SSD) || 74.78%
 +
|-
 +
| 8 || Lidy & Rauber (RP+SSD+RH) || 74.58%
 +
|-
 +
| 9 || Scaringella, N. || 73.11%
 +
|-
 +
| 10 || Ahrendt, P. || 71.55%
 +
|-
 +
| 11 || Burred, J. || 62.63% 
 +
|-
 +
| 12 || Soares, V. || 60.98%
 +
|-
 +
| 13 || Tzanetakis, G. || 60.72%
 
|-
 
|-
 
|}
 
|}

Revision as of 21:44, 27 July 2010

Goal: To classify polyphonic music audio (in PCM format) into genre categories.

Dataset: Two sets of data were used: Magnatune and USPOP. The Magnatune dataset has a hierarchical genre taxonomy, while the USPOP categories are at a single level. The audio sampling rates used were either 44.1 KHz or 22.05 KHz (mono). More data information is in the following table:

Dataset Size (@ 44.1 KHz) Number of Training Files Number of Testing Files
Magnatune 34.3 GB 1005 510
USPOP 28.4 GB 940 474


OVERALL
Rank Participant Mean of Magnatune Hierarchical Classification Accuracy and USPOP Raw Classification Accuracy
1 Bergstra, Casagrande & Eck (2) 82.34%
2 Bergstra, Casagrande & Eck (1) 81.77%
3 Mandel & Ellis 78.81%
4 West, K. 75.29%
5 Lidy & Rauber (SSD+RH) 75.27%
6 Pampalk, E. 75.14%
7 Lidy & Rauber (RP+SSD) 74.78%
8 Lidy & Rauber (RP+SSD+RH) 74.58%
9 Scaringella, N. 73.11%
10 Ahrendt, P. 71.55%
11 Burred, J. 62.63%
12 Soares, V. 60.98%
13 Tzanetakis, G. 60.72%