Difference between revisions of "2005:Audio Drum Detection Results"
From MIREX Wiki
| Line 34: | Line 34: | ||
|-style="background: yellow;"  | |-style="background: yellow;"  | ||
! Rank !! Participant !! Total Average Classification F-measure !! Total Overall Onset Precision !! Total Overall Onset Recall !! Total Overall Onset F-measure !! BD Average F-measure !! HH Average F-measure !! SD Average F-measure !! Runtime (s) !! Machine     | ! Rank !! Participant !! Total Average Classification F-measure !! Total Overall Onset Precision !! Total Overall Onset Recall !! Total Overall Onset F-measure !! BD Average F-measure !! HH Average F-measure !! SD Average F-measure !! Runtime (s) !! Machine     | ||
| − | + | |-  | |
| − | + | |1 || Dittmar, C. || 0.753 || 77.73% || 72.56% || 0.751 || 0.783 || 0.696 || 0.790    | |
| + | |-  | ||
| + | |2 || Yoshii, Goto, & Okuno || 0.690 || 64.25% || 62.75% || 0.660 || 0.714 || 0.533 || 0.811    | ||
| + | |-  | ||
| + | |3 || Tanghe, Degroeve, & De Baets 3 || 0.595 || 61.85% || 64.85% || 0.633 || 0.685 || 0.568 || 0.548    | ||
| + | |-  | ||
| + | |4 || Tanghe, Degroeve, & De Baets 4 || 0.589 || 62.45% || 64.22% || 0.628 || 0.668 || 0.555 || 0.559    | ||
| + | |-  | ||
| + | |5 || Tanghe, Degroeve, & De Baets 1 || 0.580 || 57.78% || 65.94% || 0.616 || 0.669 || 0.553 || 0.533    | ||
| + | |-  | ||
| + | |6 || Paulus, J. || 0.440 || 55.82% || 54.36% || 0.551 || 0.430 || 0.497 || 0.424    | ||
| + | |-  | ||
| + | |7 || Gillet & Richard 2 || 0.401 || 77.22% || 30.16% || 0.434 || 0.658 || 0.156 || 0.364    | ||
| + | |-  | ||
| + | |8 || Gillet & Richard 1 || 0.339 || 66.33% || 30.57% || 0.418 || 0.466 || 0.279 || 0.265    | ||
| + | |-  | ||
|}  | |}  | ||
<br>  | <br>  | ||
| Line 44: | Line 59: | ||
|-style="background: yellow;"  | |-style="background: yellow;"  | ||
! Rank !! Participant !! Total Average Classification F-measure !! Total Overall Onset Precision !! Total Overall Onset Recall !! Total Overall Onset F-measure !! BD Average F-measure !! HH Average F-measure !! SD Average F-measure !! Runtime (s) !! Machine     | ! Rank !! Participant !! Total Average Classification F-measure !! Total Overall Onset Precision !! Total Overall Onset Recall !! Total Overall Onset F-measure !! BD Average F-measure !! HH Average F-measure !! SD Average F-measure !! Runtime (s) !! Machine     | ||
| − | + | |-  | |
| − | + | 1  Yoshii, Goto, & Okuno  0.617  53.06%  66.30%  0.589  0.686  0.481  0.652    | |
| + | |-  | ||
| + | 2  Tanghe, Degroeve, & De Baets 3  0.546  52.67%  68.21%  0.594  0.613  0.485  0.525    | ||
| + | |-  | ||
| + | 3  Tanghe, Degroeve, & De Baets 4  0.541  51.90%  67.98%  0.589  0.612  0.479  0.523    | ||
| + | |-  | ||
| + | 4  Tanghe, Degroeve, & De Baets 1  0.533  47.48%  69.24%  0.577  0.602  0.467  0.511    | ||
| + | |-  | ||
| + | 5  Dittmar, C.  0.494  51.20%  51.51%  0.514  0.509  0.418  0.535    | ||
| + | |-  | ||
| + | 6  Paulus, J.  0.425  55.82%  55.10%  0.555  0.444  0.489  0.412    | ||
| + | |-  | ||
| + | 7  Gillet & Richard 2  0.273  66.68%  28.22%  0.397  0.393  0.178  0.269    | ||
| + | |-  | ||
| + | 8  Gillet & Richard 1  0.259  58.48%  26.11%  0.361  0.375  0.196  0.210   | ||
| + | |-  | ||
|}  | |}  | ||
<br>  | <br>  | ||
| Line 54: | Line 84: | ||
|-style="background: yellow;"  | |-style="background: yellow;"  | ||
! Rank !! Participant !! Total Average Classification F-measure !! Total Overall Onset Precision !! Total Overall Onset Recall !! Total Overall Onset F-measure !! BD Average F-measure !! HH Average F-measure !! SD Average F-measure !! Runtime (s) !! Machine     | ! Rank !! Participant !! Total Average Classification F-measure !! Total Overall Onset Precision !! Total Overall Onset Recall !! Total Overall Onset F-measure !! BD Average F-measure !! HH Average F-measure !! SD Average F-measure !! Runtime (s) !! Machine     | ||
| − | + | |-  | |
| − | + | 1  Yoshii, Goto, & Okuno  0.716  76.13%  69.16%  0.725  0.776  0.661  0.710    | |
| + | |-  | ||
| + | 2 Tanghe, Degroeve, & De Baets 4  0.685  72.32%  75.83%  0.740  0.766  0.691  0.599    | ||
| + | |-  | ||
| + | 3 Tanghe, Degroeve, & De Baets 3  0.683  72.74%  75.65%  0.742  0.763  0.701  0.585    | ||
| + | |-  | ||
| + | 4  Tanghe, Degroeve, & De Baets 1  0.673  69.86%  77.12%  0.733  0.753  0.693  0.574    | ||
| + | |-  | ||
| + | 5 Gillet & Richard 2  0.630  81.60%  53.00%  0.643  0.774  0.517  0.599    | ||
| + | |-  | ||
| + | 6 Dittmar, C.  0.617  71.37%  67.78%  0.695  0.631  0.675  0.544    | ||
| + | |-  | ||
| + | 7 Paulus, J.  0.597  62.90%  75.47%  0.686  0.648  0.695  0.449    | ||
| + | |-  | ||
| + | 8  Gillet & Richard 1  0.544  76.11%  48.80%  0.595  0.715  0.479  0.436   | ||
| + | |-  | ||
|}  | |}  | ||
<br>  | <br>  | ||
Revision as of 22:04, 26 July 2010
Goal: To detect the occurences of drum events in polyphonic audio.
Dataset: At least 50 files of both live and sequenced music, with many genres encompassed and various degrees of drum audio contained in the files. Three collections of music were used: Christian Dittmar (CD), Koen Tanghe (KT) and Masataka Goto (MG). Participants were evaluated against music from each individual collection, and then the three collection scores are averaged to produce a composite score. 
| OVERALL | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Rank | Participant | Total Average Classification F-measure | Total Overall Onset Precision | Total Overall Onset Recall | Total Overall Onset F-measure | BD Average F-measure | HH Average F-measure | SD Average F-measure | Runtime (s) | Machine | 
| 1 | Yoshii, Goto, & Okuno | 0.670 | 64.92% | 67.02% | 0.659 | 0.728 | 0.574 | 0.702 | 8534 | B 0 | 
| 2 | Tanghe, Degroeve, & De Baets 3 | 0.611 | 63.30% | 71.19% | 0.670 | 0.688 | 0.601 | 0.555 | 1337 | Y | 
| 3 | Tanghe, Degroeve, & De Baets 4 | 0.609 | 62.57% | 71.09% | 0.666 | 0.686 | 0.590 | 0.562 | 1342 | Y | 
| 4 | Tanghe, Degroeve, & De Baets 1 | 0.599 | 60.02% | 72.45% | 0.657 | 0.677 | 0.588 | 0.542 | 1350 | Y | 
| 5 | Dittmar, C. | 0.588 | 65.68% | 63.38% | 0.645 | 0.606 | 0.585 | 0.581 | 673 | R | 
| 6 | Paulus, J. | 0.499 | 59.61% | 64.86% | 0.621 | 0.527 | 0.587 | 0.430 | 1137 | L | 
| 7 | Gillet & Richard 2 | 0.443 | 77.09% | 40.63% | 0.532 | 0.598 | 0.334 | 0.428 | 21248 | F | 
| 8 | Gillet & Richard 1 | 0.391 | 69.84% | 37.98% | 0.492 | 0.533 | 0.343 | 0.317 | 21997 | F | 
| CHRISTIAN DITTMAR COLLECTION | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Rank | Participant | Total Average Classification F-measure | Total Overall Onset Precision | Total Overall Onset Recall | Total Overall Onset F-measure | BD Average F-measure | HH Average F-measure | SD Average F-measure | Runtime (s) | Machine | 
| 1 | Dittmar, C. | 0.753 | 77.73% | 72.56% | 0.751 | 0.783 | 0.696 | 0.790 | ||
| 2 | Yoshii, Goto, & Okuno | 0.690 | 64.25% | 62.75% | 0.660 | 0.714 | 0.533 | 0.811 | ||
| 3 | Tanghe, Degroeve, & De Baets 3 | 0.595 | 61.85% | 64.85% | 0.633 | 0.685 | 0.568 | 0.548 | ||
| 4 | Tanghe, Degroeve, & De Baets 4 | 0.589 | 62.45% | 64.22% | 0.628 | 0.668 | 0.555 | 0.559 | ||
| 5 | Tanghe, Degroeve, & De Baets 1 | 0.580 | 57.78% | 65.94% | 0.616 | 0.669 | 0.553 | 0.533 | ||
| 6 | Paulus, J. | 0.440 | 55.82% | 54.36% | 0.551 | 0.430 | 0.497 | 0.424 | ||
| 7 | Gillet & Richard 2 | 0.401 | 77.22% | 30.16% | 0.434 | 0.658 | 0.156 | 0.364 | ||
| 8 | Gillet & Richard 1 | 0.339 | 66.33% | 30.57% | 0.418 | 0.466 | 0.279 | 0.265 | ||
| KOEN TANGHE COLLECTION | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Rank | Participant | Total Average Classification F-measure | Total Overall Onset Precision | Total Overall Onset Recall | Total Overall Onset F-measure | BD Average F-measure | HH Average F-measure | SD Average F-measure | Runtime (s) | Machine | 
| MASATAKA GOTO COLLECTION (50 songs from RWC Music Database: RWC-MDB-P-2001) | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Rank | Participant | Total Average Classification F-measure | Total Overall Onset Precision | Total Overall Onset Recall | Total Overall Onset F-measure | BD Average F-measure | HH Average F-measure | SD Average F-measure | Runtime (s) | Machine |