Difference between revisions of "2009:Audio Music Mood Classification Results"

From MIREX Wiki
(Overall Summary Results)
Line 45: Line 45:
  
 
==Overall Summary Results==
 
==Overall Summary Results==
 +
 +
==Overall Summary Results==
 +
===MIREX 2008 Audio Mood Classification Summary Results - Raw Classification Accuracy Averaged Over Three Train/Test Folds===
 +
 +
<csv p=3>audiomood/summary_audiomood.csv</csv>
 +
 +
=====Accuracy Across Folds=====
 +
 +
<csv p=3>audiomood/audiomood_Accuracy.csv</csv>
 +
 +
=====Accuracy Across Categories=====
 +
 +
<csv p=3>audiomood/audiomood_Accuracy_Per_Class.csv</csv>
 +
 +
===MIREX 2008 Audio Artist Classification Evaluation Logs and Confusion Matrices===
 +
 +
====MIREX 2008 Audio Mood Classification Run Times====
 +
 +
<csv>mood.runtime.csv</csv>
 +
 +
====CSV Files Without Rounding====
 +
[https://www.music-ir.org/mirex/2008/results/mood/audiomood_results_fold.csv audiomood_results_fold.csv]<br />
 +
[https://www.music-ir.org/mirex/2008/results/mood/audiomood_results_class.csv audiomood_results_class.csv]<br />
 +
 +
====Results By Algorithm====
 +
(.tar.gz) <br />
 +
'''GP1''' = [https://www.music-ir.org/mirex/2008/results/mood/GP1.tar.gz G. Peeters]<br />
 +
'''GT1''' = [https://www.music-ir.org/mirex/2008/results/mood/GT1.tar.gz G. Tzanetakis]<br />
 +
'''GT2''' = [https://www.music-ir.org/mirex/2008/results/mood/GT2.tar.gz G. Tzanetakis]<br />
 +
'''GT3''' = [https://www.music-ir.org/mirex/2008/results/mood/GT3.tar.gz G. Tzanetakis]<br />
 +
'''HW''' = [https://www.music-ir.org/mirex/2008/results/mood/HW.tar.gz G. H. Wang]<br />
 +
'''KL''' = [https://www.music-ir.org/mirex/2008/results/mood/KL.tar.gz K. Lee]<br />
 +
'''LRPPI1''' = [https://www.music-ir.org/mirex/2008/results/mood/LRPPI1.tar.gz T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 1]<br />
 +
'''LRPPI2''' = [https://www.music-ir.org/mirex/2008/results/mood/LRPPI2.tar.gz T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 2]<br />
 +
'''LRPPI3''' = [https://www.music-ir.org/mirex/2008/results/mood/LRPPI3.tar.gz T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 3]<br />
 +
'''LRPPI4''' = [https://www.music-ir.org/mirex/2008/results/mood/LRPPI4.tar.gz T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 4]<br />
 +
'''ME1''' = [https://www.music-ir.org/mirex/2008/results/mood/ME1.tar.gz I. M. Mandel, D. P. W. Ellis 1]<br />
 +
'''ME2''' = [https://www.music-ir.org/mirex/2008/results/mood/ME2.tar.gz I. M. Mandel, D. P. W. Ellis 2]<br />
 +
'''ME3''' = [https://www.music-ir.org/mirex/2008/results/mood/ME3.tar.gz I. M. Mandel, D. P. W. Ellis 3]<br />
 +
 +
===Friedman's Test for Significant Differences===
 +
====Classes vs. Systems====
 +
The Friedman test was run in MATLAB against the average accuracy for each class.
 +
 +
=====Friedman's Anova Table=====
 +
 +
<csv>mood/perClassAccuracy.friedman.csv</csv>
 +
 +
=====Tukey-Kramer HSD Multi-Comparison=====
 +
The Tukey-Kramer HSD multi-comparison data below was generated using the following MATLAB instruction.
 +
Command: [c, m, h, gnames] = multicompare(stats, 'ctype', 'tukey-kramer', 'estimate', 'friedman', 'alpha', 0.05);
 +
 +
<csv>mood/perClassAccuracy.friedman.detail.csv</csv>
 +
 +
[[Image:Mood.perClassAccuracy.friedman.tukeyKramerHSD.png]]
 +
 +
====Folds vs. Systems====
 +
The Friedman test was run in MATLAB against the accuracy for each fold.
 +
 +
=====Friedman's Anova Table=====
 +
 +
<csv>mood/perFoldAccuracy.friedman.csv</csv>
 +
 +
=====Tukey-Kramer HSD Multi-Comparison=====
 +
The Tukey-Kramer HSD multi-comparison data below was generated using the following MATLAB instruction.
 +
Command: [c, m, h, gnames] = multicompare(stats, 'ctype', 'tukey-kramer', 'estimate', 'friedman', 'alpha', 0.05);
 +
 +
<csv>mood/perFoldAccuracy.friedman.detail.csv</csv>
 +
 +
[[Image:Mood.perFoldAccuracy.friedman.tukeyKramerHSD.png]]

Revision as of 20:40, 15 October 2009

Introduction

These are the results for the 2009 running of the Audio Music Mood Classification task. For background information about this task set please refer to the Audio Music Mood Classification page.

General Legend

Team ID

ANO= Anonymous
BP1= [Juan José Burred, Geoffroy Peeters (file)]
BP2 = [Juan José Burred, Geoffroy Peeters (tw)]
CL1 = [Chuan Cao, Ming Li]
CL2 = [Chuan Cao, Ming Li]
FCY1 = [Tao Feng, XiaoOu Chen, DeShun Yang]
FCY2 = [Tao Feng, XiaoOu Chen, DeShun Yang]
GP = [Geoffroy Peeters]
GT1 = [George Tzanetakis (mono)]
GT2 = [George Tzanetakis (stereo)]
GLR1 = [A. Grecu, T. Lidy, A. Rauber (full)]
GLR2 = [A. Grecu, T. Lidy, A. Rauber (template)]
HNOS1 = [Takashi Hasegawa, Takuya Nishimoto, Nobutaka Ono, Shigeki Sagayama (tcca)]
HNOS2 = [Takashi Hasegawa, Takuya Nishimoto, Nobutaka Ono, Shigeki Sagayama (tcck)]
HNOS3 = [Takashi Hasegawa, Takuya Nishimoto, Nobutaka Ono, Shigeki Sagayama (tccl)]
HNOS4 = [Takashi Hasegawa, Takuya Nishimoto, Nobutaka Ono, Shigeki Sagayama (tcpk)]
HW1 = [Huaxin Wang]
HW2 = [Huaxin Wang]
VA1 = [T. Lidy, A. Grecu, A. Rauber, A. Pertusa, P. J. Ponce de Léon, J. M. Iñesta (WMV)]
VA2 = [T. Lidy, A. Grecu, A. Rauber, A. Pertusa, P. J. Ponce de Léon, J. M. Iñesta (BWWV)]
LZG = [Yi Liu, Tao Zheng, Yue Gao (RUC_1)]
RK1 = [Preeti Rao, Sujeet Kini]
RK2 = [Preeti Rao, Sujeet Kini]
RCJ1 = [Jia-Min Ren, Zhi-Sheng Chen, Jyh-Shing Roger Jang]
RCJ2 = [Jia-Min Ren, Zhi-Sheng Chen, Jyh-Shing Roger Jang]
RCJ3 = [Jia-Min Ren, Zhi-Sheng Chen, Jyh-Shing Roger Jang]
RCJ4 = [Jia-Min Ren, Zhi-Sheng Chen, Jyh-Shing Roger Jang]
SS = [Klaus Seyerlehner, Markus Schedl]
TAOS= [Emiru Tsunoo, Taichi Akase, Nobutaka Ono, Shigeki Sagayama]
TTOS = [Emiru Tsunoo, George Tzanetakis, Nobutaka Ono, Shigeki Sagayama]
MTG1 = [N. Wack, E. Guaus, C. Laurier, O. Meyers, R. Marxer, D. Bogdanov, J. Serrà, P. Herrera (false, rca)]
MTG2 = [N. Wack, E. Guaus, C. Laurier, O. Meyers, R. Marxer, D. Bogdanov, J. Serrà, P. Herrera (true, rca)]
MTG3 = [N. Wack, E. Guaus, C. Laurier, O. Meyers, R. Marxer, D. Bogdanov, J. Serrà, P. Herrera (false, simca)]
MTG4 = [N. Wack, E. Guaus, C. Laurier, O. Meyers, R. Marxer, D. Bogdanov, J. Serrà, P. Herrera (true, simca)]
MTG5 = [N. Wack, E. Guaus, C. Laurier, O. Meyers, R. Marxer, D. Bogdanov, J. Serrà, P. Herrera (false, svm)]
MTG6 = [N. Wack, E. Guaus, C. Laurier, O. Meyers, R. Marxer, D. Bogdanov, J. Serrà, P. Herrera (true, svm)]
XLZZG = [Jieping Xu, Yi Liu, Tao Zheng, Chao Zhen, Yue Gao (RUC_1)]
XZZ = [JiePing Xu, Chao Zhen, Tao Zheng (RUC_2)]

Overall Summary Results

Overall Summary Results

MIREX 2008 Audio Mood Classification Summary Results - Raw Classification Accuracy Averaged Over Three Train/Test Folds

file /nema-raid/www/mirex/results/audiomood/summary_audiomood.csv not found

Accuracy Across Folds

file /nema-raid/www/mirex/results/audiomood/audiomood_Accuracy.csv not found

Accuracy Across Categories

file /nema-raid/www/mirex/results/audiomood/audiomood_Accuracy_Per_Class.csv not found

MIREX 2008 Audio Artist Classification Evaluation Logs and Confusion Matrices

MIREX 2008 Audio Mood Classification Run Times

file /nema-raid/www/mirex/results/mood.runtime.csv not found

CSV Files Without Rounding

audiomood_results_fold.csv
audiomood_results_class.csv

Results By Algorithm

(.tar.gz)
GP1 = G. Peeters
GT1 = G. Tzanetakis
GT2 = G. Tzanetakis
GT3 = G. Tzanetakis
HW = G. H. Wang
KL = K. Lee
LRPPI1 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 1
LRPPI2 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 2
LRPPI3 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 3
LRPPI4 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 4
ME1 = I. M. Mandel, D. P. W. Ellis 1
ME2 = I. M. Mandel, D. P. W. Ellis 2
ME3 = I. M. Mandel, D. P. W. Ellis 3

Friedman's Test for Significant Differences

Classes vs. Systems

The Friedman test was run in MATLAB against the average accuracy for each class.

Friedman's Anova Table

file /nema-raid/www/mirex/results/mood/perClassAccuracy.friedman.csv not found

Tukey-Kramer HSD Multi-Comparison

The Tukey-Kramer HSD multi-comparison data below was generated using the following MATLAB instruction. Command: [c, m, h, gnames] = multicompare(stats, 'ctype', 'tukey-kramer', 'estimate', 'friedman', 'alpha', 0.05);

file /nema-raid/www/mirex/results/mood/perClassAccuracy.friedman.detail.csv not found

File:Mood.perClassAccuracy.friedman.tukeyKramerHSD.png

Folds vs. Systems

The Friedman test was run in MATLAB against the accuracy for each fold.

Friedman's Anova Table

file /nema-raid/www/mirex/results/mood/perFoldAccuracy.friedman.csv not found

Tukey-Kramer HSD Multi-Comparison

The Tukey-Kramer HSD multi-comparison data below was generated using the following MATLAB instruction. Command: [c, m, h, gnames] = multicompare(stats, 'ctype', 'tukey-kramer', 'estimate', 'friedman', 'alpha', 0.05);

file /nema-raid/www/mirex/results/mood/perFoldAccuracy.friedman.detail.csv not found

File:Mood.perFoldAccuracy.friedman.tukeyKramerHSD.png