Difference between revisions of "2016:Singing Voice Separation Results"
From MIREX Wiki
(→Legend) |
|||
(2 intermediate revisions by the same user not shown) | |||
Line 3: | Line 3: | ||
=== Description === | === Description === | ||
− | These are the results for the 2016 running of the Singing Voice Separation task set. For more information about this task set please refer to the [[2016:Singing Voice Separation]] page. | + | These are the results for the 2016 running of the Singing Voice Separation task set. The evaluation set is kindly provided by [http://mac.citi.sinica.edu.tw/ikala/ iKala]. If you need to cite this page, please also cite T.-S. Chan, T.-C. Yeh, Z.-C. Fan, H.-W. Chen, L. Su, Y.-H. Yang, and R. Jang, "Vocal activity informed singing voice separation with the iKala dataset," in Proc. IEEE Int. Conf. Acoust., Speech and Signal Process., 2015, pp. 718-722. For more information about this task set please refer to the [[2016:Singing Voice Separation]] page. |
=== Legend === | === Legend === | ||
Line 13: | Line 13: | ||
! width="80" style="text-align: center;" | Abstract PDF | ! width="80" style="text-align: center;" | Abstract PDF | ||
! width="440" | Contributors | ! width="440" | Contributors | ||
+ | ! width="80" | Training set | ||
|- | |- | ||
! GD1 | ! GD1 | ||
− | | Harmonic Modeling of Singing Voice for Source Separation || style="text-align: center;" | [https://www.music-ir.org/mirex/abstracts/2016/GD1.pdf PDF] || Georgi Dzhambazov | + | | Harmonic Modeling of Singing Voice for Source Separation || style="text-align: center;" | [https://www.music-ir.org/mirex/abstracts/2016/GD1.pdf PDF] || Georgi Dzhambazov || Unknown |
|- | |- | ||
! HC1 | ! HC1 | ||
− | | MIREX 2016 Submission for Singing Voice Separation || style="text-align: center;" | [https://www.music-ir.org/mirex/abstracts/2016/HC1.pdf PDF] || Yi-Chun Huang, Tai-Shih Chi | + | | MIREX 2016 Submission for Singing Voice Separation || style="text-align: center;" | [https://www.music-ir.org/mirex/abstracts/2016/HC1.pdf PDF] || Yi-Chun Huang, Tai-Shih Chi || iKala |
|- | |- | ||
! LCP1 | ! LCP1 | ||
− | | Deep Clustering for Singing Voice Separation || style="text-align: center;" | [https://www.music-ir.org/mirex/abstracts/2016/LCP1.pdf PDF] || Yi Luo, Zhuo Chen, John R. Hershey, Jonathan Le Roux, Daniel P. W. Ellis | + | | Deep Clustering for Singing Voice Separation || style="text-align: center;" | [https://www.music-ir.org/mirex/abstracts/2016/LCP1.pdf PDF] || Yi Luo, Zhuo Chen, John R. Hershey, Jonathan Le Roux, Daniel P. W. Ellis || SiSEC |
|- | |- | ||
! LCP2 | ! LCP2 | ||
− | | Deep Clustering for Singing Voice Separation || style="text-align: center;" | [https://www.music-ir.org/mirex/abstracts/2016/LCP2.pdf PDF] || Yi Luo, Zhuo Chen, John R. Hershey, Jonathan Le Roux, Daniel P. W. Ellis | + | | Deep Clustering for Singing Voice Separation || style="text-align: center;" | [https://www.music-ir.org/mirex/abstracts/2016/LCP2.pdf PDF] || Yi Luo, Zhuo Chen, John R. Hershey, Jonathan Le Roux, Daniel P. W. Ellis || SiSEC |
|- | |- | ||
! MC2 | ! MC2 | ||
− | | MIREX 2016 Submission for Singing Voice Separation || style="text-align: center;" | - || Marius Miron, Pritish Chandna | + | | MIREX 2016 Submission for Singing Voice Separation || style="text-align: center;" | - || Marius Miron, Pritish Chandna || Unknown |
|- | |- | ||
! MC3 | ! MC3 | ||
− | | MIREX 2016 Submission for Singing Voice Separation || style="text-align: center;" | - || Marius Miron, Pritish Chandna | + | | MIREX 2016 Submission for Singing Voice Separation || style="text-align: center;" | - || Marius Miron, Pritish Chandna || Unknown |
|- | |- | ||
! RSGP1 | ! RSGP1 | ||
− | | Singing Voice Separation | + | | Singing Voice Separation Using Deep Neural Networks and F0 Estimation || style="text-align: center;" | [https://www.music-ir.org/mirex/abstracts/2016/RSGP1.pdf PDF] || Gerard Roma, Emad M. Grais, Andrew J. R. Simpson, Mark D. Plumbley || iKala |
|} | |} | ||
Latest revision as of 02:56, 3 August 2016
Contents
Introduction
Description
These are the results for the 2016 running of the Singing Voice Separation task set. The evaluation set is kindly provided by iKala. If you need to cite this page, please also cite T.-S. Chan, T.-C. Yeh, Z.-C. Fan, H.-W. Chen, L. Su, Y.-H. Yang, and R. Jang, "Vocal activity informed singing voice separation with the iKala dataset," in Proc. IEEE Int. Conf. Acoust., Speech and Signal Process., 2015, pp. 718-722. For more information about this task set please refer to the 2016:Singing Voice Separation page.
Legend
Submission code | Submission name | Abstract PDF | Contributors | Training set |
---|---|---|---|---|
GD1 | Harmonic Modeling of Singing Voice for Source Separation | Georgi Dzhambazov | Unknown | |
HC1 | MIREX 2016 Submission for Singing Voice Separation | Yi-Chun Huang, Tai-Shih Chi | iKala | |
LCP1 | Deep Clustering for Singing Voice Separation | Yi Luo, Zhuo Chen, John R. Hershey, Jonathan Le Roux, Daniel P. W. Ellis | SiSEC | |
LCP2 | Deep Clustering for Singing Voice Separation | Yi Luo, Zhuo Chen, John R. Hershey, Jonathan Le Roux, Daniel P. W. Ellis | SiSEC | |
MC2 | MIREX 2016 Submission for Singing Voice Separation | - | Marius Miron, Pritish Chandna | Unknown |
MC3 | MIREX 2016 Submission for Singing Voice Separation | - | Marius Miron, Pritish Chandna | Unknown |
RSGP1 | Singing Voice Separation Using Deep Neural Networks and F0 Estimation | Gerard Roma, Emad M. Grais, Andrew J. R. Simpson, Mark D. Plumbley | iKala |
Evaluation Criteria
GNSDR = Global Normalized Signal-to-Distortion Ratio
NSDR = Normalized Signal-to-Distortion Ratio
SIR = Signal-to-Interference Ratio
SAR = Signal-to-Artifacts Ratio
Summary
Summary Results
Algorithm | Voice GNSDR (dB) | Music GNSDR (dB) | Runtime (m) |
---|---|---|---|
GD1 | -2.2810 | 0.3954 | 26.4413 |
HC1 | 4.6309 | 7.8180 | 28.9727 |
LCP1 | 6.0726 | 10.9256 | 37.8235 |
LCP2 | 6.3414 | 11.1878 | 32.4800 |
MC2 | 5.2891 | 9.6678 | 34.8084 |
MC3 | 5.4920 | 9.8049 | 36.7194 |
RSGP1 | 3.2589 | 8.7664 | 32.3578 |
NSDR
For the Singing Voice (dB)
Algorithm | Mean | SD | Min | Max | Median |
---|---|---|---|---|---|
GD1 | -2.281 | 3.534 | -11.740 | 6.623 | -1.935 |
HC1 | 4.631 | 2.903 | -1.127 | 14.260 | 3.883 |
LCP1 | 6.073 | 3.462 | -1.658 | 17.170 | 5.649 |
LCP2 | 6.341 | 3.370 | -1.958 | 17.240 | 5.997 |
MC2 | 5.289 | 2.914 | -1.302 | 12.571 | 4.945 |
MC3 | 5.492 | 2.881 | -0.453 | 12.448 | 5.195 |
RSGP1 | 3.259 | 3.617 | -14.027 | 12.045 | 3.304 |
For the Music Accompaniment (dB)
Algorithm | Mean | SD | Min | Max | Median |
---|---|---|---|---|---|
GD1 | 0.395 | 1.470 | -2.260 | 5.825 | 0.211 |
HC1 | 7.818 | 2.647 | -1.258 | 15.861 | 8.046 |
LCP1 | 10.926 | 3.835 | 0.742 | 19.960 | 10.883 |
LCP2 | 11.188 | 3.626 | 2.508 | 19.875 | 11.087 |
MC2 | 9.668 | 3.676 | -7.875 | 22.734 | 9.926 |
MC3 | 9.805 | 3.944 | -7.679 | 22.453 | 10.099 |
RSGP1 | 8.766 | 3.828 | -6.905 | 18.065 | 8.966 |
Boxplots
SIR
For the Singing Voice (dB)
Algorithm | Mean | SD | Min | Max | Median |
---|---|---|---|---|---|
GD1 | 6.562 | 9.778 | -30.324 | 24.205 | 9.043 |
HC1 | 9.762 | 10.006 | -28.081 | 23.070 | 12.713 |
LCP1 | 13.822 | 10.320 | -24.604 | 26.302 | 16.844 |
LCP2 | 14.518 | 10.163 | -23.923 | 26.606 | 17.467 |
MC2 | 10.471 | 10.189 | -29.559 | 28.854 | 12.621 |
MC3 | 10.844 | 10.314 | -28.896 | 29.313 | 13.346 |
RSGP1 | 16.240 | 10.743 | -26.850 | 33.092 | 18.471 |
For the Music Accompaniment (dB)
Algorithm | Mean | SD | Min | Max | Median |
---|---|---|---|---|---|
GD1 | 1.984 | 9.805 | -11.864 | 37.146 | 0.840 |
HC1 | 8.978 | 9.299 | -2.271 | 42.987 | 7.576 |
LCP1 | 24.015 | 7.915 | 5.929 | 47.039 | 23.596 |
LCP2 | 25.170 | 7.220 | 11.146 | 48.129 | 24.578 |
MC2 | 19.811 | 6.984 | 2.837 | 42.629 | 19.143 |
MC3 | 19.609 | 7.091 | 2.366 | 43.881 | 18.602 |
RSGP1 | 17.737 | 6.484 | 4.017 | 42.258 | 16.593 |
Boxplots
SAR
For the Singing Voice (dB)
Algorithm | Mean | SD | Min | Max | Median |
---|---|---|---|---|---|
GD1 | 2.394 | 4.562 | -12.304 | 9.967 | 3.465 |
HC1 | 10.768 | 7.287 | -19.592 | 20.876 | 12.282 |
LCP1 | 10.183 | 8.150 | -23.437 | 20.348 | 12.538 |
LCP2 | 10.137 | 8.305 | -22.992 | 20.063 | 12.235 |
MC2 | 11.243 | 7.441 | -18.240 | 20.293 | 12.813 |
MC3 | 11.248 | 7.498 | -15.216 | 20.749 | 12.811 |
RSGP1 | 6.627 | 7.140 | -24.741 | 14.289 | 8.313 |
For the Music Accompaniment (dB)
Algorithm | Mean | SD | Min | Max | Median |
---|---|---|---|---|---|
GD1 | 2.708 | 2.661 | -6.024 | 10.608 | 2.948 |
HC1 | 8.019 | 3.476 | -3.232 | 16.401 | 7.483 |
LCP1 | 7.168 | 3.732 | -2.080 | 17.939 | 7.087 |
LCP2 | 7.346 | 3.483 | -0.713 | 18.004 | 7.451 |
MC2 | 6.106 | 3.537 | -2.182 | 13.294 | 6.145 |
MC3 | 6.288 | 3.507 | -3.431 | 13.943 | 6.559 |
RSGP1 | 5.286 | 2.539 | -1.849 | 13.933 | 5.373 |
Boxplots
Runtime Data
Submission Code | Runtime (m) |
---|---|
GD1 | 26.4413 |
HC1 | 28.9727 |
LCP1 | 37.8235 |
LCP2 | 32.4800 |
MC2 | 34.8084 |
MC3 | 36.7194 |
RSGP1 | 32.3578 |