Difference between revisions of "2014:Singing Voice Separation Results"
(→NSDR) |
(→Description) |
||
(9 intermediate revisions by 2 users not shown) | |||
Line 3: | Line 3: | ||
=== Description === | === Description === | ||
− | These are the results for the 2014 running of the Singing Voice Separation task set. For more information about this task set please refer to the [[2014:Singing Voice Separation]] page. | + | These are the results for the 2014 running of the Singing Voice Separation task set. The evaluation set is kindly provided by [http://mac.citi.sinica.edu.tw/ikala/ iKala]. If you need to cite this page, please also cite T.-S. Chan, T.-C. Yeh, Z.-C. Fan, H.-W. Chen, L. Su, Y.-H. Yang, and R. Jang, "Vocal activity informed singing voice separation with the iKala dataset," in Proc. IEEE Int. Conf. Acoust., Speech and Signal Process., 2015, pp. 718-722. For more information about this task set please refer to the [[2014:Singing Voice Separation]] page. |
=== Legend === | === Legend === | ||
Line 27: | Line 27: | ||
|- | |- | ||
! IIY1 | ! IIY1 | ||
− | | | + | | Singing Voice Separation and Vocal F0 Estimation based on Robust PCA and Subharmonic Summation || style="text-align: center;" | [https://www.music-ir.org/mirex/abstracts/2014/IIY1.pdf PDF] || Yukara Ikemiya, Katsutoshi Itoyama, Kazuyoshi Yoshii |
|- | |- | ||
! IIY2 | ! IIY2 | ||
− | | | + | | Singing Voice Separation and Vocal F0 Estimation based on Robust PCA and Subharmonic Summation || style="text-align: center;" | [https://www.music-ir.org/mirex/abstracts/2014/IIY2.pdf PDF] || Yukara Ikemiya, Katsutoshi Itoyama, Kazuyoshi Yoshii |
|- | |- | ||
! JL1 | ! JL1 | ||
− | | | + | | Singing Voice Separation Based on Sparse Nature and Spectral/Temporal Discontinuity || style="text-align: center;" | [https://www.music-ir.org/mirex/abstracts/2014/JL1.pdf PDF] || Il-Young Jeong, Kyogu Lee |
|- | |- | ||
! LFR1 | ! LFR1 | ||
− | | | + | | Kernel Additive Modelling with light models || style="text-align: center;" | [http://dx.doi.org/10.1109/ICASSP.2015.7177935 PDF] || Antoine Liutkus, Derry Fitzgerald, Zafar Rafii |
|- | |- | ||
! RNA1 | ! RNA1 | ||
Line 61: | Line 61: | ||
{| class="sortable" border="1" cellspacing="0" style="text-align: left;" | {| class="sortable" border="1" cellspacing="0" style="text-align: left;" | ||
|- style="background: yellow;" | |- style="background: yellow;" | ||
− | ! Algorithm !! Voice GNSDR (dB) !! Music GNSDR (dB) | + | ! Algorithm !! Voice GNSDR (dB) !! Music GNSDR (dB) !! Runtime (hh) |
|- | |- | ||
− | | GW1 || 2.8861 || 5.2549 | + | | GW1 || 2.8861 || 5.2549 || 24 |
|- | |- | ||
− | | HKHS1 || -1.3988 || 0.3483 | + | | HKHS1 || -1.3988 || 0.3483 || 06 |
|- | |- | ||
− | | HKHS2 || -1.9413 || 0.5239 | + | | HKHS2 || -1.9413 || 0.5239 || 06 |
|- | |- | ||
− | | HKHS3 || -2.4807 || 0.1414 | + | | HKHS3 || -2.4807 || 0.1414 || 06 |
|- | |- | ||
− | | IIY1 || 4.2190 || 7.7893 | + | | IIY1 || 4.2190 || 7.7893 || 02 |
|- | |- | ||
− | | IIY2 || 4.4764 || 7.8661 | + | | IIY2 || 4.4764 || 7.8661 || 02 |
|- | |- | ||
− | | JL1 || 4.1564 || 5.6304 | + | | JL1 || 4.1564 || 5.6304 || 01 |
|- | |- | ||
− | | LFR1 || 0.6499 || 3.0867 | + | | LFR1 || 0.6499 || 3.0867 || 03 |
|- | |- | ||
− | | RNA1 || 3.6915 || 7.3153 | + | | RNA1 || 3.6915 || 7.3153 || 06 |
|- | |- | ||
− | | RP1 || 2.8602 || 5.0306 | + | | RP1 || 2.8602 || 5.0306 || 01 |
|- | |- | ||
− | | YC1 || -0.8202 || -3.1150 | + | | YC1 || -0.8202 || -3.1150 || 13 |
|} | |} | ||
Line 90: | Line 90: | ||
=== For the Singing Voice (dB) === | === For the Singing Voice (dB) === | ||
− | <csv> | + | <csv>2014/svs/nsdr-voice.csv</csv> |
=== For the Music Accompaniment (dB) === | === For the Music Accompaniment (dB) === | ||
− | <csv> | + | <csv>2014/svs/nsdr-music.csv</csv> |
=== Boxplots === | === Boxplots === | ||
Line 127: | Line 127: | ||
[[File:2014-svs-sar.png]] | [[File:2014-svs-sar.png]] | ||
+ | |||
+ | == Individual Spectrograms == | ||
+ | |||
+ | As the MIREX test set is private, we use three other songs with similar characteristics to demonstrate the algorithms. | ||
+ | |||
+ | {| border="1" cellspacing="0" style="text-align: left;" | ||
+ | |- | ||
+ | | [[File:2014-svs-gw1.png|thumb|Spectrograms for GW1]] | ||
+ | | [[File:2014-svs-hkhs1.png|thumb|Spectrograms for HKHS1]] | ||
+ | | [[File:2014-svs-hkhs2.png|thumb|Spectrograms for HKHS2]] | ||
+ | | [[File:2014-svs-hkhs3.png|thumb|Spectrograms for HKHS3]] | ||
+ | |- | ||
+ | | [[File:2014-svs-iiy1.png|thumb|Spectrograms for IIY1]] | ||
+ | | [[File:2014-svs-iiy2.png|thumb|Spectrograms for IIY2]] | ||
+ | | [[File:2014-svs-jl1.png|thumb|Spectrograms for JL1]] | ||
+ | | [[File:2014-svs-lfr1.png|thumb|Spectrograms for LFR1]] | ||
+ | |- | ||
+ | | [[File:2014-svs-rna1.png|thumb|Spectrograms for RNA1]] | ||
+ | | [[File:2014-svs-rp1.png|thumb|Spectrograms for RP1]] | ||
+ | | [[File:2014-svs-yc1.png|thumb|Spectrograms for YC1]] | ||
+ | |} | ||
+ | |||
+ | === Labels === | ||
+ | |||
+ | '''a''' = input mixture ''x'' <br /> | ||
+ | '''b''' = ground truth voice for ''x'' <br /> | ||
+ | '''c''' = extracted voice from ''x'' <br /> | ||
+ | '''d''' = input mixture ''y'' <br /> | ||
+ | '''e''' = ground truth voice for ''y'' <br /> | ||
+ | '''f''' = extracted voice from ''y'' <br /> | ||
+ | '''g''' = input mixture ''z'' <br /> | ||
+ | '''h''' = ground truth voice for ''z'' <br /> | ||
+ | '''i''' = extracted voice from ''z'' <br /> | ||
+ | |||
+ | == Runtime Data == | ||
+ | |||
+ | <csv>2014/svs/runtime.csv</csv> |
Latest revision as of 02:42, 3 August 2016
Introduction
Description
These are the results for the 2014 running of the Singing Voice Separation task set. The evaluation set is kindly provided by iKala. If you need to cite this page, please also cite T.-S. Chan, T.-C. Yeh, Z.-C. Fan, H.-W. Chen, L. Su, Y.-H. Yang, and R. Jang, "Vocal activity informed singing voice separation with the iKala dataset," in Proc. IEEE Int. Conf. Acoust., Speech and Signal Process., 2015, pp. 718-722. For more information about this task set please refer to the 2014:Singing Voice Separation page.
Legend
Submission code | Submission name | Abstract PDF | Contributors |
---|---|---|---|
GW1 | Bayesian Singing-Voice Separation | Guan-Xiang Wang, Po-Kai Yang, Chung-Chien Hsu, Jen-Tzung Chien | |
HKHS1 | Singing-Voice Separation using Deep Recurrent Neural Networks | Po-Sen Huang, Minje Kim, Mark Hasegawa-Johnson, Paris Smaragdis | |
HKHS2 | Singing-Voice Separation using Deep Recurrent Neural Networks | Po-Sen Huang, Minje Kim, Mark Hasegawa-Johnson, Paris Smaragdis | |
HKHS3 | Singing-Voice Separation using Deep Recurrent Neural Networks | Po-Sen Huang, Minje Kim, Mark Hasegawa-Johnson, Paris Smaragdis | |
IIY1 | Singing Voice Separation and Vocal F0 Estimation based on Robust PCA and Subharmonic Summation | Yukara Ikemiya, Katsutoshi Itoyama, Kazuyoshi Yoshii | |
IIY2 | Singing Voice Separation and Vocal F0 Estimation based on Robust PCA and Subharmonic Summation | Yukara Ikemiya, Katsutoshi Itoyama, Kazuyoshi Yoshii | |
JL1 | Singing Voice Separation Based on Sparse Nature and Spectral/Temporal Discontinuity | Il-Young Jeong, Kyogu Lee | |
LFR1 | Kernel Additive Modelling with light models | Antoine Liutkus, Derry Fitzgerald, Zafar Rafii | |
RNA1 | Singing Voice Separation using Adaptive Window Harmonic Sinusoidal Modeling | Preeti Rao, Nagesh Nayak, Sharath Adavanne | |
RP1 | REPET-SIM for Singing Voice Separation | Zafar Rafii, Bryan Pardo | |
YC1 | MIREX 2014 Submission for Singing Voice Separation | Frederick Yen, Tai-Shih Chi |
Evaluation Criteria
GNSDR = Global Normalized Signal-to-Distortion Ratio
NSDR = Normalized Signal-to-Distortion Ratio
SIR = Signal-to-Interference Ratio
SAR = Signal-to-Artifacts Ratio
Summary
Summary Results
Algorithm | Voice GNSDR (dB) | Music GNSDR (dB) | Runtime (hh) |
---|---|---|---|
GW1 | 2.8861 | 5.2549 | 24 |
HKHS1 | -1.3988 | 0.3483 | 06 |
HKHS2 | -1.9413 | 0.5239 | 06 |
HKHS3 | -2.4807 | 0.1414 | 06 |
IIY1 | 4.2190 | 7.7893 | 02 |
IIY2 | 4.4764 | 7.8661 | 02 |
JL1 | 4.1564 | 5.6304 | 01 |
LFR1 | 0.6499 | 3.0867 | 03 |
RNA1 | 3.6915 | 7.3153 | 06 |
RP1 | 2.8602 | 5.0306 | 01 |
YC1 | -0.8202 | -3.1150 | 13 |
NSDR
For the Singing Voice (dB)
Algorithm | Mean | SD | Min | Max | Median |
---|---|---|---|---|---|
GW1 | 2.8861 | 3.4543 | -7.1344 | 12.819 | 2.5745 |
HKHS1 | -1.3988 | 3.0574 | -9.4234 | 4.292 | -1.2971 |
HKHS2 | -1.9413 | 3.2899 | -11.309 | 7.2794 | -1.4234 |
HKHS3 | -2.4807 | 3.8173 | -12.272 | 9.7879 | -1.5772 |
IIY1 | 4.219 | 3.2378 | -3.4536 | 15.517 | 4.4345 |
IIY2 | 4.4764 | 3.0584 | -2.3763 | 16.212 | 4.2927 |
JL1 | 4.1564 | 3.9819 | -3.9431 | 15.822 | 3.7558 |
LFR1 | 0.64992 | 3.7455 | -9.6199 | 7.4555 | 0.97393 |
RNA1 | 3.6915 | 3.4319 | -1.8064 | 14.38 | 3.4024 |
RP1 | 2.8602 | 2.7926 | -3.771 | 12.105 | 2.4553 |
YC1 | -0.82015 | 3.4857 | -8.7424 | 7.9435 | -0.42864 |
For the Music Accompaniment (dB)
Algorithm | Mean | SD | Min | Max | Median |
---|---|---|---|---|---|
GW1 | 5.2549 | 4.0553 | -0.792 | 16.155 | 5.0222 |
HKHS1 | 0.34825 | 2.207 | -5.7359 | 6.1051 | 0.33855 |
HKHS2 | 0.52394 | 2.5029 | -6.1304 | 6.0994 | 0.90947 |
HKHS3 | 0.14144 | 2.3196 | -6.3693 | 5.8651 | 0.55883 |
IIY1 | 7.7893 | 3.0938 | -4.0068 | 13.949 | 8.1274 |
IIY2 | 7.8661 | 3.5329 | -2.4807 | 15.082 | 8.7023 |
JL1 | 5.6304 | 4.0732 | -0.91101 | 17.648 | 5.5284 |
LFR1 | 3.0867 | 2.6421 | -6.9241 | 10.887 | 2.9156 |
RNA1 | 7.3153 | 2.9143 | -5.9455 | 13.753 | 7.5214 |
RP1 | 5.0306 | 3.004 | -0.99542 | 15.424 | 4.9872 |
YC1 | -3.115 | 3.6797 | -12.229 | 3.5503 | -2.9997 |
Boxplots
SIR
For the Singing Voice (dB)
Algorithm | Mean | SD | Min | Max | Median |
---|---|---|---|---|---|
GW1 | 6.9844 | 9.43 | -26.961 | 18.215 | 8.8768 |
HKHS1 | 6.7499 | 10.673 | -30.345 | 23.034 | 7.058 |
HKHS2 | 8.3009 | 11.705 | -32.287 | 29.393 | 7.8647 |
HKHS3 | 7.7489 | 12.137 | -30.839 | 28.544 | 8.9649 |
IIY1 | 15.472 | 11.954 | -28.445 | 32.446 | 18.307 |
IIY2 | 13.267 | 11.466 | -30.369 | 30.901 | 16.314 |
JL1 | 9.6169 | 9.6173 | -24.122 | 24.341 | 11.755 |
LFR1 | 10.454 | 10.442 | -26.952 | 23.638 | 13.042 |
RNA1 | 16.323 | 10.951 | -24.713 | 34.263 | 18.799 |
RP1 | 7.2958 | 9.7631 | -28.981 | 20.303 | 9.7841 |
YC1 | 10.873 | 10.809 | -28.646 | 27.301 | 12.837 |
For the Music Accompaniment (dB)
Algorithm | Mean | SD | Min | Max | Median |
---|---|---|---|---|---|
GW1 | 6.96 | 13.076 | -12.643 | 42.653 | 4.3054 |
HKHS1 | 1.4953 | 10.084 | -13.232 | 38.909 | -1.4525 |
HKHS2 | 2.4162 | 10.465 | -9.9978 | 34.081 | -0.51852 |
HKHS3 | 0.90212 | 9.7862 | -11.02 | 34.345 | -0.66779 |
IIY1 | 12.44 | 8.1972 | -0.61968 | 41.502 | 11.163 |
IIY2 | 14.301 | 8.3307 | 0.49447 | 41.767 | 13.809 |
JL1 | 5.6509 | 10.636 | -13.16 | 39.5 | 4.3978 |
LFR1 | 4.4493 | 10.109 | -11.445 | 41.717 | 2.0394 |
RNA1 | 12.938 | 8.5096 | -1.3967 | 40.34 | 11.979 |
RP1 | 5.5158 | 10.417 | -11.092 | 44.235 | 4.6256 |
YC1 | 0.90846 | 8.4936 | -12.296 | 32.53 | -0.63057 |
Boxplots
SAR
For the Singing Voice (dB)
Algorithm | Mean | SD | Min | Max | Median |
---|---|---|---|---|---|
GW1 | 10.398 | 6.6431 | -13.219 | 19.227 | 11.757 |
HKHS1 | 4.4392 | 5.1179 | -16.316 | 17.676 | 5.1547 |
HKHS2 | 3.6845 | 6.1018 | -23.638 | 15.233 | 4.4692 |
HKHS3 | 3.6391 | 5.615 | -14.303 | 15.068 | 3.2243 |
IIY1 | 7.7078 | 7.4547 | -25.591 | 16.613 | 9.6827 |
IIY2 | 8.5817 | 7.2202 | -24.222 | 17.066 | 10.487 |
JL1 | 10.026 | 7.5205 | -16.962 | 21.028 | 11.47 |
LFR1 | 4.729 | 5.6625 | -23.426 | 12.721 | 5.5804 |
RNA1 | 6.662 | 7.3118 | -25.659 | 15.083 | 8.9188 |
RP1 | 9.8241 | 6.5477 | -13.189 | 24.156 | 11.033 |
YC1 | 2.9058 | 5.0893 | -21.403 | 8.872 | 4.0133 |
For the Music Accompaniment (dB)
Algorithm | Mean | SD | Min | Max | Median |
---|---|---|---|---|---|
GW1 | 8.7701 | 3.3088 | -2.6918 | 16.204 | 8.6529 |
HKHS1 | 4.4585 | 4.2757 | -12.382 | 16.774 | 4.7823 |
HKHS2 | 4.2321 | 4.22 | -8.0849 | 14.269 | 4.5204 |
HKHS3 | 5.3476 | 4.6397 | -12.255 | 14.438 | 5.794 |
IIY1 | 5.4262 | 3.1853 | -2.678 | 15.981 | 5.2362 |
IIY2 | 5.0379 | 3.325 | -3.1753 | 16.62 | 5.0873 |
JL1 | 9.6038 | 3.7963 | -3.8019 | 17.577 | 10.158 |
LFR1 | 4.8871 | 3.4349 | -12.787 | 10.789 | 5.0422 |
RNA1 | 4.7221 | 3.4545 | -1.6892 | 15.052 | 4.9501 |
RP1 | 7.6957 | 3.3901 | -7.2754 | 14.854 | 7.9782 |
YC1 | -1.9525 | 2.8357 | -12.203 | 6.2045 | -2.3271 |
Boxplots
Individual Spectrograms
As the MIREX test set is private, we use three other songs with similar characteristics to demonstrate the algorithms.
Labels
a = input mixture x
b = ground truth voice for x
c = extracted voice from x
d = input mixture y
e = ground truth voice for y
f = extracted voice from y
g = input mixture z
h = ground truth voice for z
i = extracted voice from z
Runtime Data
Submission Code | Runtime (hh) |
---|---|
GW1 | 24 |
HKHS1 | 06 |
HKHS2 | 06 |
HKHS3 | 06 |
IIY1 | 02 |
IIY2 | 02 |
JL1 | 01 |
LFR1 | 03 |
RNA1 | 06 |
RP1 | 01 |
YC1 | 13 |