Difference between revisions of "2005:Audio Genre Classification Results"

From MIREX Wiki
Line 3: Line 3:
 
'''Dataset:''' Two sets of data were used: Magnatune and USPOP. The Magnatune dataset has a hierarchical genre taxonomy, while the USPOP categories are at a single level. The audio sampling rates used were either 44.1 KHz or 22.05 KHz (mono). More data information is in the following table:  
 
'''Dataset:''' Two sets of data were used: Magnatune and USPOP. The Magnatune dataset has a hierarchical genre taxonomy, while the USPOP categories are at a single level. The audio sampling rates used were either 44.1 KHz or 22.05 KHz (mono). More data information is in the following table:  
  
{| border="1"
+
{| border="1"  cellspacing="0"
 
|- style="background: yellow; text-align: center;"
 
|- style="background: yellow; text-align: center;"
 
! Dataset !! Size (@ 44.1 KHz) !! Number of Training Files !! Number of Testing Files  
 
! Dataset !! Size (@ 44.1 KHz) !! Number of Training Files !! Number of Testing Files  
Line 14: Line 14:
  
 
<br>
 
<br>
{| border="1"
+
{| border="1"  cellspacing="0"
 
|- style="background: yellow; text-align: center;"
 
|- style="background: yellow; text-align: center;"
 
! colspan="3" | OVERALL  
 
! colspan="3" | OVERALL  
Line 50: Line 50:
 
<br>
 
<br>
  
{| border="1"
+
{| border="1"  cellspacing="0"
 
|- style="background: yellow; text-align: center;"
 
|- style="background: yellow; text-align: center;"
 
! colspan="9" | Magnatune Dataset  
 
! colspan="9" | Magnatune Dataset  
Line 88: Line 88:
 
|}
 
|}
 
<br>
 
<br>
{| border="1"
+
{| border="1"  cellspacing="0"
 
|- style="background: yellow; text-align: center;"
 
|- style="background: yellow; text-align: center;"
 
! colspan="7" | USPOP Dataset
 
! colspan="7" | USPOP Dataset

Revision as of 14:55, 29 July 2010

Goal: To classify polyphonic music audio (in PCM format) into genre categories.

Dataset: Two sets of data were used: Magnatune and USPOP. The Magnatune dataset has a hierarchical genre taxonomy, while the USPOP categories are at a single level. The audio sampling rates used were either 44.1 KHz or 22.05 KHz (mono). More data information is in the following table:

Dataset Size (@ 44.1 KHz) Number of Training Files Number of Testing Files
Magnatune 34.3 GB 1005 510
USPOP 28.4 GB 940 474


OVERALL
Rank Participant Mean of Magnatune Hierarchical Classification
Accuracy and USPOP Raw Classification Accuracy
1 Bergstra, Casagrande & Eck (2) 82.34%
2 Bergstra, Casagrande & Eck (1) 81.77%
3 Mandel & Ellis 78.81%
4 West, K. 75.29%
5 Lidy & Rauber (SSD+RH) 75.27%
6 Pampalk, E. 75.14%
7 Lidy & Rauber (RP+SSD) 74.78%
8 Lidy & Rauber (RP+SSD+RH) 74.58%
9 Scaringella, N. 73.11%
10 Ahrendt, P. 71.55%
11 Burred, J. 62.63%
12 Soares, V. 60.98%
13 Tzanetakis, G. 60.72%


Magnatune Dataset
Rank Participant Hierarchical Classification Accuracy Normalized Hierarchical Classification Accuracy Raw Classification Accuracy Normalized Raw Classification Accuracy Runtime (s) Machine Confusion Matrix Files
1 Bergstra, Casagrande & Eck (2) 77.75% 73.04% 75.10% 69.49% -- -- BCE_2_MTeval.txt
2 Bergstra, Casagrande & Eck (1) 77.25% 72.13% 74.71% 68.73% 23400 B0 BCE_1_MTeval.txt
3 Mandel & Ellis 71.96% 69.63% 67.65% 63.99% 8729 R ME_MTeval.txt
4 West, K. 71.67% 68.33% 68.43% 63.87% 43327 B4 W_MTeval.txt
5 Lidy & Rauber (RP+SSD) 71.08% 70.90% 67.65% 66.85% 6372 B1 LR_RP+SSD_MTeval.txt
6 Lidy & Rauber (RP+SSD+RH) 70.88% 70.52% 67.25% 66.27% 6372 B1 LR_RP+SSD+RH_MTeval.txt
7 Lidy & Rauber (SSD+RH) 70.78% 69.31% 67.65% 65.54% 6372 B1 LR_SSD+RH_MTeval.txt
8 Scaringella, N. 70.47% 72.30% 66.14% 67.12% 22740 G SN_MTeval.txt
9 Pampalk, E. 69.90% 70.91% 66.47% 66.26% 3312 B0 P_MTeval.txt
10 Ahrendt, P. 64.61% 61.40% 60.98% 57.15% 4920 B1 A_MTeval.txt
11 Burred, J. 59.22% 61.96% 54.12% 55.68% 12483 B2 B_MTeval.txt
12 Tzanetakis, G. 58.14% 53.47% 55.49% 50.39% 1312 B0 T_MTeval.txt
13 Soares, V. 55.29% 60.73% 49.41% 53.54% 23880 Y SV_MTeval.txt
14 Li, M. TO * -- -- -- -- -- --
15 Chen & Gao DNC * -- -- -- -- -- --


USPOP Dataset
Rank Participant Raw Classification Accuracy Normalized Raw Classification Accuracy Runtime (s) Machine Confusion Matrix Files
1 Bergstra, Casagrande & Eck (2) 86.92% 82.91% BCE_2_USeval.txt
2 Bergstra, Casagrande & Eck (1) 86.29% 82.50% 23400 B0 BCE_1_USeval.txt
3 Mandel & Ellis 85.65% 76.91% 7856 R ME_USeval.txt
4 Pampalk, E. 80.38% 78.74% 3090 B0 P_USeval.txt
5 Lidy & Rauber (SSD+RH) 79.75% 75.45% 5164 B1 LR_SSD+RH_USeval.txt
6 West, K. 78.90% 74.67% 18557 B4 W_USeval.txt
7 Lidy & Rauber (RP+SSD) 78.48% 77.62% 5164 B1 LR_RP+SSD_USeval.txt
8 Ahrendt, P. 78.48% 73.23% 9702 B1 A_USeval.txt
9 Lidy & Rauber (RP+SSD+RH) 78.27% 76.84% 5194 B1 LR_RP+SSD+RH_USeval.txt
10 Scaringella, N. 75.74% 77.67% 24606 G SN_USeval.txt
11 Soares, V. 66.67% 67.28% 14369 Y SV_USeval.txt
12 Burred, J. 66.03% 72.50% 9233 B2 B_USeval.txt
13 Tzanetakis, G. 63.29% 50.19% 1320 B0 T_USeval.txt
14 Chen & Gao 22.93% 17.96% N/A Y CG_USeval.txt
15 Li, M. TO *