Difference between revisions of "2008:Audio Genre Classification Results"

From MIREX Wiki
(MIREX 2008 Audio Genre Classification Run Times)
(Results By Algorithm)
 
(31 intermediate revisions by 7 users not shown)
Line 1: Line 1:
 
==Introduction==
 
==Introduction==
These are the results for the 2008 running of the Audio Genre Classification task. For background information about this task set please refer to the [[Audio Genre Classification]] page.  
+
These are the results for the 2008 running of the Audio Genre Classification task. For background information about this task set please refer to the [[2008:Audio Genre Classification]] page.  
  
 
===General Legend===
 
===General Legend===
 
====Team ID====
 
====Team ID====
'''CL1''' = [https://www.music-ir.org/mirex/2008/abs/.pdf C. Cao, M. Li 1]<br />
+
'''CL1''' = [https://www.music-ir.org/mirex/abstracts/2008/mirex08_genre_CC.pdf C. Cao, M. Li 1]<br />
'''CL2''' = [https://www.music-ir.org/mirex/2008/abs/.pdf C. Cao, M. Li 2]<br />
+
'''CL2''' = [https://www.music-ir.org/mirex/abstracts/2008/mirex08_genre_CC.pdf C. Cao, M. Li 2]<br />
'''LRPPI1''' = [https://www.music-ir.org/mirex/2008/abs/.pdf T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 1]<br />
+
'''GP1''' = [https://www.music-ir.org/mirex/abstracts/2008/Peeters_2008_ISMIR_MIREX.pdf G. Peeters]<br />
'''LRPPI2''' = [https://www.music-ir.org/mirex/2008/abs/.pdf T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 2]<br />
+
'''GT1 (mono)''' = [https://www.music-ir.org/mirex/abstracts/2008/mirex2007.pdf G. Tzanetakis]<br />
'''LRPPI3''' = [https://www.music-ir.org/mirex/2008/abs/.pdf T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 3]<br />
+
'''GT2 (stereo)''' = [https://www.music-ir.org/mirex/abstracts/2008/mirex2007.pdf G. Tzanetakis]<br />
'''LRPPI4''' = [https://www.music-ir.org/mirex/2008/abs/.pdf T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 4]<br />
+
'''GT3 (multicore)''' = [https://www.music-ir.org/mirex/abstracts/2008/mirex2007.pdf G. Tzanetakis]<br />
'''ME1''' = [https://www.music-ir.org/mirex/2008/abs/.pdf I. M. Mandel, D. P. W. Ellis 1]<br />
+
'''LRPPI1''' = [https://www.music-ir.org/mirex/abstracts/2008/abstract_mirex08_class.pdf T. Lidy, A. Rauber, A. Pertusa, P. Peonce de León, J. M. Iñesta 1]<br />
'''ME2''' = [https://www.music-ir.org/mirex/2008/abs/.pdf I. M. Mandel, D. P. W. Ellis 2]<br />
+
'''LRPPI2''' = [https://www.music-ir.org/mirex/abstracts/2008/abstract_mirex08_class.pdf T. Lidy, A. Rauber, A. Pertusa, P. Peonce de León, J. M. Iñesta 2]<br />
'''ME3''' = [https://www.music-ir.org/mirex/2008/abs/.pdf I. M. Mandel, D. P. W. Ellis 3]<br />
+
'''LRPPI3''' = [https://www.music-ir.org/mirex/abstracts/2008/abstract_mirex08_class.pdf T. Lidy, A. Rauber, A. Pertusa, P. Peonce de León, J. M. Iñesta 3]<br />
'''GP''' = [https://www.music-ir.org/mirex/2008/abs/.pdf G. Peeters]<br />
+
'''LRPPI4''' = [https://www.music-ir.org/mirex/abstracts/2008/abstract_mirex08_class.pdf T. Lidy, A. Rauber, A. Pertusa, P. Peonce de León, J. M. Iñesta 4]<br />
'''GT1''' = [https://www.music-ir.org/mirex/2008/abs/.pdf G. Tzanetakis]<br />
+
'''ME1''' = [https://www.music-ir.org/mirex/abstracts/2008/AA_AG_AT_MM_CC_mandel.pdf I. M. Mandel, D. P. W. Ellis 1]<br />
'''GT2''' = [https://www.music-ir.org/mirex/2008/abs/.pdf G. Tzanetakis]<br />
+
'''ME2''' = [https://www.music-ir.org/mirex/abstracts/2008/AA_AG_AT_MM_CC_mandel.pdf I. M. Mandel, D. P. W. Ellis 2]<br />
'''GT3''' = [https://www.music-ir.org/mirex/2008/abs/.pdf G. Tzanetakis]<br />
+
'''ME3''' = [https://www.music-ir.org/mirex/abstracts/2008/AA_AG_AT_MM_CC_mandel.pdf I. M. Mandel, D. P. W. Ellis 3]<br />
  
 
==Overall Summary Results==
 
==Overall Summary Results==
 +
===Task 1 (MIXED) Results===
  
===Task 1 (MIXED) Results===
+
====MIREX 2008 Audio Genre Classification Summary Results - Raw Classification Accuracy Averaged Over Three Train/Test Folds====
 +
 
 +
<csv>2008/genremixed/audiogenre.avg.results.csv</csv>
 +
 
 +
=====Accuracy Across Folds=====
 +
 
 +
<csv>2008/genremixed/audiogenre.results.fold.csv</csv>
  
====MIREX 2008 Audio Genre Classification Summary Results - Raw and Hierarchical Classification Accuracy Averaged Over Three Train/Test Folds====
+
=====Accuracy Across Categories=====
  
<csv>genre.results.csv</csv>
+
<csv>2008/genremixed/audiogenre.results.class.csv</csv>
  
 
====MIREX 2008 Audio Genre Classification Evaluation Logs and Confusion Matrices====
 
====MIREX 2008 Audio Genre Classification Evaluation Logs and Confusion Matrices====
Line 30: Line 37:
 
====MIREX 2008 Audio Genre Classification Run Times====
 
====MIREX 2008 Audio Genre Classification Run Times====
  
<csv>genre.runtime.csv</csv>
+
<csv>2008/genre.runtime.csv</csv>
 +
 
 +
====CSV Files Without Rounding====
 +
[https://www.music-ir.org/mirex/results/2008/genremixed/audiogenre_results_fold.csv audiogenre_results_fold.csv]<br />
 +
[https://www.music-ir.org/mirex/results/2008/genremixed/audiogenre_results_class.csv audiogenre_results_class.csv]<br />
  
 +
====Results By Algorithm====
 +
(.tar.gz) <br />
 +
'''CL1''' = [https://www.music-ir.org/mirex/results/2008/genremixed/CL1.tar.gz C. Cao, M. Li 1]<br />
 +
'''CL2''' = [https://www.music-ir.org/mirex/results/2008/genremixed/CL2.tar.gz C. Cao, M. Li 2]<br />
 +
'''LRPPI1''' = [https://www.music-ir.org/mirex/results/2008/genremixed/LRPPI1.tar.gz T. Lidy, A. Rauber, A. Pertusa, P. Peonce de León, J. M. Iñesta 1]<br />
 +
'''LRPPI2''' = [https://www.music-ir.org/mirex/results/2008/genremixed/LRPPI2.tar.gz T. Lidy, A. Rauber, A. Pertusa, P. Peonce de León, J. M. Iñesta 2]<br />
 +
'''LRPPI3''' = [https://www.music-ir.org/mirex/results/2008/genremixed/LRPPI3.tar.gz T. Lidy, A. Rauber, A. Pertusa, P. Peonce de León, J. M. Iñesta 3]<br />
 +
'''LRPPI4''' = [https://www.music-ir.org/mirex/results/2008/genremixed/LRPPI4.tar.gz T. Lidy, A. Rauber, A. Pertusa, P. Peonce de León, J. M. Iñesta 4]<br />
 +
'''ME1''' = [https://www.music-ir.org/mirex/results/2008/genremixed/ME1.tar.gz I. M. Mandel, D. P. W. Ellis 1]<br />
 +
'''ME2''' = [https://www.music-ir.org/mirex/results/2008/genremixed/ME2.tar.gz I. M. Mandel, D. P. W. Ellis 2]<br />
 +
'''ME3''' = [https://www.music-ir.org/mirex/results/2008/genremixed/ME3.tar.gz I. M. Mandel, D. P. W. Ellis 3]<br />
 +
'''GP''' = [https://www.music-ir.org/mirex/results/2008/genremixed/GP1.tar.gz G. Peeters]<br />
 +
'''GT1''' = [https://www.music-ir.org/mirex/results/2008/genremixed/GT1.tar.gz G. Tzanetakis]<br />
 +
'''GT2''' = [https://www.music-ir.org/mirex/results/2008/genremixed/GT2.tar.gz G. Tzanetakis]<br />
 +
'''GT3''' = [https://www.music-ir.org/mirex/results/2008/genremixed/GT3.tar.gz G. Tzanetakis]<br />
  
 
===Task 2 (LATIN) Results===
 
===Task 2 (LATIN) Results===
  
====MIREX 2008 Audio Genre Classification Summary Results - Raw and Hierarchical Classification Accuracy Averaged Over Three Train/Test Folds====
+
====MIREX 2008 Audio Genre Classification Summary Results - Raw Classification Accuracy Averaged Over Three Train/Test Folds====
  
<csv>genre.results.csv</csv>
+
<csv>2008/genrelatin/audiolatin.avg.results.csv</csv>
 +
 
 +
=====Accuracy Across Folds=====
 +
 
 +
<csv>2008/genrelatin/audiolatin.results.fold.csv</csv>
 +
 
 +
=====Accuracy Across Categories=====
 +
 
 +
<csv>2008/genrelatin/audiolatin.results.class.csv</csv>
  
 
====MIREX 2008 Audio Genre Classification Evaluation Logs and Confusion Matrices====
 
====MIREX 2008 Audio Genre Classification Evaluation Logs and Confusion Matrices====
  
 
====MIREX 2008 Audio Genre Classification Run Times====
 
====MIREX 2008 Audio Genre Classification Run Times====
<csv>latin.runtime.csv</csv>
+
<csv>2008/latin.runtime.csv</csv>
 +
 
 +
====CSV Files Without Rounding====
 +
[https://www.music-ir.org/mirex/results/2008/genrelatin/audiolatin_results_fold.csv audiolatin_results_fold.csv]<br />
 +
[https://www.music-ir.org/mirex/results/2008/genrelatin/audiolatin_results_class.csv audiolatin_results_class.csv]<br />
 +
 
 +
====Results By Algorithm====
 +
(.tar.gz) <br />
 +
'''CL1''' = [https://www.music-ir.org/mirex/results/2008/genrelatin/CL1.tar.gz C. Cao, M. Li 1]<br />
 +
'''CL2''' = [https://www.music-ir.org/mirex/results/2008/genrelatin/CL2.tar.gz C. Cao, M. Li 2]<br />
 +
'''GP1''' = [https://www.music-ir.org/mirex/results/2008/genrelatin/GP1.tar.gz G. Peeters]<br />
 +
'''GT1''' = [https://www.music-ir.org/mirex/results/2008/genrelatin/GT1.tar.gz G. Tzanetakis]<br />
 +
'''GT2''' = [https://www.music-ir.org/mirex/results/2008/genrelatin/GT2.tar.gz G. Tzanetakis]<br />
 +
'''GT3''' = [https://www.music-ir.org/mirex/results/2008/genrelatin/GT3.tar.gz G. Tzanetakis]<br />
 +
'''LRPPI1''' = [https://www.music-ir.org/mirex/results/2008/genrelatin/LRPPI1.tar.gz T. Lidy, A. Rauber, A. Pertusa, P. Peonce de León, J. M. Iñesta 1]<br />
 +
'''LRPPI2''' = [https://www.music-ir.org/mirex/results/2008/genrelatin/LRPPI2.tar.gz T. Lidy, A. Rauber, A. Pertusa, P. Peonce de León, J. M. Iñesta 2]<br />
 +
'''LRPPI3''' = [https://www.music-ir.org/mirex/results/2008/genrelatin/LRPPI3.tar.gz T. Lidy, A. Rauber, A. Pertusa, P. Peonce de León, J. M. Iñesta 3]<br />
 +
'''LRPPI4''' = [https://www.music-ir.org/mirex/results/2008/genrelatin/LRPPI4.tar.gz T. Lidy, A. Rauber, A. Pertusa, P. Peonce de León, J. M. Iñesta 4]<br />
 +
'''ME1''' = [https://www.music-ir.org/mirex/results/2008/genrelatin/ME1.tar.gz I. M. Mandel, D. P. W. Ellis 1]<br />
 +
'''ME2''' = [https://www.music-ir.org/mirex/results/2008/genrelatin/ME2.tar.gz I. M. Mandel, D. P. W. Ellis 2]<br />
 +
'''ME3''' = [https://www.music-ir.org/mirex/results/2008/genrelatin/ME3.tar.gz I. M. Mandel, D. P. W. Ellis 3]<br />
 +
 
 +
===Friedman's Test for Significant Differences===
 +
====Task 1 (Mixed) Classes vs. Systems====
 +
The Friedman test was run in MATLAB against the average accuracy for each class.
 +
 
 +
=====Friedman's Anova Table=====
 +
 
 +
<csv>2008/genremixed/perClassAccuracy.friedman.csv</csv>
 +
 
 +
=====Tukey-Kramer HSD Multi-Comparison=====
 +
The Tukey-Kramer HSD multi-comparison data below was generated using the following MATLAB instruction.
 +
Command: [c, m, h, gnames] = multicompare(stats, 'ctype', 'tukey-kramer', 'estimate', 'friedman', 'alpha', 0.05);
 +
 
 +
<csv>2008/genremixed/perClassAccuracy.friedman.detail.csv</csv>
 +
 
 +
[[Image:2008_genremixed.perclassaccuracy.friedman.tukeykramerhsd.png]]
 +
 
 +
====Task 1 (Mixed) Folds vs. Systems====
 +
The Friedman test was run in MATLAB against the accuracy for each fold.
 +
 
 +
=====Friedman's Anova Table=====
 +
 
 +
<csv>2008/genremixed/perFoldAccuracy.friedman.csv</csv>
 +
 
 +
=====Tukey-Kramer HSD Multi-Comparison=====
 +
The Tukey-Kramer HSD multi-comparison data below was generated using the following MATLAB instruction.
 +
Command: [c, m, h, gnames] = multicompare(stats, 'ctype', 'tukey-kramer', 'estimate', 'friedman', 'alpha', 0.05);
 +
 
 +
<csv>2008/genremixed/perFoldAccuracy.friedman.detail.csv</csv>
 +
 
 +
[[Image:2008_genremixed.perfoldaccuracy.friedman.tukeykramerhsd.png]]
 +
 
 +
 
 +
====Task 2 (Latin) Classes vs. Systems====
 +
The Friedman test was run in MATLAB against the average accuracy for each class.
 +
 
 +
=====Friedman's Anova Table=====
 +
 
 +
<csv>2008/genrelatin/perClassAccuracy.friedman.csv</csv>
 +
 
 +
=====Tukey-Kramer HSD Multi-Comparison=====
 +
The Tukey-Kramer HSD multi-comparison data below was generated using the following MATLAB instruction.
 +
Command: [c, m, h, gnames] = multicompare(stats, 'ctype', 'tukey-kramer', 'estimate', 'friedman', 'alpha', 0.05);
 +
 
 +
<csv>2008/genrelatin/perClassAccuracy.friedman.detail.csv</csv>
 +
 
 +
[[Image:2008_genrelatin.perclassaccuracy.friedman.tukeykramerhsd.png]]
 +
 
 +
====Task 2 (Latin) Folds vs. Systems====
 +
The Friedman test was run in MATLAB against the accuracy for each fold.
 +
 
 +
=====Friedman's Anova Table=====
 +
 
 +
<csv>2008/genrelatin/perFoldAccuracy.friedman.csv</csv>
 +
 
 +
=====Tukey-Kramer HSD Multi-Comparison=====
 +
The Tukey-Kramer HSD multi-comparison data below was generated using the following MATLAB instruction.
 +
Command: [c, m, h, gnames] = multicompare(stats, 'ctype', 'tukey-kramer', 'estimate', 'friedman', 'alpha', 0.05);
 +
 
 +
<csv>2008/genrelatin/perFoldAccuracy.friedman.detail.csv</csv>
 +
 
 +
[[Image:2008_genrelatin.perfoldaccuracy.friedman.tukeykramerhsd.png]]
 +
 
  
 
[[Category: Results]]
 
[[Category: Results]]

Latest revision as of 16:13, 23 July 2010

Introduction

These are the results for the 2008 running of the Audio Genre Classification task. For background information about this task set please refer to the 2008:Audio Genre Classification page.

General Legend

Team ID

CL1 = C. Cao, M. Li 1
CL2 = C. Cao, M. Li 2
GP1 = G. Peeters
GT1 (mono) = G. Tzanetakis
GT2 (stereo) = G. Tzanetakis
GT3 (multicore) = G. Tzanetakis
LRPPI1 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de León, J. M. Iñesta 1
LRPPI2 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de León, J. M. Iñesta 2
LRPPI3 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de León, J. M. Iñesta 3
LRPPI4 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de León, J. M. Iñesta 4
ME1 = I. M. Mandel, D. P. W. Ellis 1
ME2 = I. M. Mandel, D. P. W. Ellis 2
ME3 = I. M. Mandel, D. P. W. Ellis 3

Overall Summary Results

Task 1 (MIXED) Results

MIREX 2008 Audio Genre Classification Summary Results - Raw Classification Accuracy Averaged Over Three Train/Test Folds

Participant Average Classifcation Accuracy
CL1 62.04%
CL2 63.39%
GP1 63.90%
GT1 64.71%
GT2 66.41%
GT3 65.62%
LRPPI1 65.06%
LRPPI2 62.26%
LRPPI3 60.84%
LRPPI4 60.46%
ME1 65.41%
ME2 65.30%
ME3 65.20%

download these results as csv

Accuracy Across Folds
Classification fold CL1 CL2 GP1 GT1 GT2 GT3 LRPPI1 LRPPI2 LRPPI3 LRPPI4 ME1 ME2 ME3
0 0.592 0.598 0.634 0.639 0.642 0.654 0.650 0.610 0.598 0.606 0.631 0.631 0.628
1 0.644 0.661 0.634 0.651 0.682 0.664 0.669 0.637 0.626 0.617 0.668 0.665 0.666
2 0.625 0.643 0.649 0.652 0.669 0.651 0.633 0.622 0.602 0.592 0.663 0.662 0.663

download these results as csv

Accuracy Across Categories
Class CL1 CL2 GP1 GT1 GT2 GT3 LRPPI1 LRPPI2 LRPPI3 LRPPI4 ME1 ME2 ME3
BAROQUE 0.616 0.637 0.750 0.669 0.724 0.673 0.673 0.660 0.666 0.629 0.754 0.759 0.757
BLUES 0.711 0.741 0.674 0.690 0.677 0.701 0.700 0.703 0.713 0.689 0.713 0.706 0.706
CLASSICAL 0.608 0.598 0.592 0.559 0.649 0.606 0.563 0.603 0.559 0.524 0.666 0.669 0.672
COUNTRY 0.624 0.596 0.697 0.793 0.830 0.679 0.669 0.640 0.621 0.617 0.660 0.656 0.653
EDANCE 0.560 0.591 0.536 0.590 0.624 0.648 0.672 0.626 0.646 0.686 0.657 0.649 0.639
JAZZ 0.679 0.699 0.606 0.627 0.682 0.626 0.640 0.602 0.566 0.574 0.679 0.676 0.680
METAL 0.677 0.709 0.750 0.713 0.656 0.733 0.707 0.642 0.623 0.643 0.612 0.627 0.629
RAPHIPHOP 0.809 0.823 0.873 0.846 0.846 0.854 0.860 0.837 0.826 0.848 0.841 0.836 0.837
ROCKROLL 0.420 0.418 0.406 0.384 0.414 0.447 0.448 0.391 0.377 0.391 0.450 0.450 0.448
ROMANTIC 0.501 0.527 0.508 0.602 0.540 0.597 0.574 0.523 0.488 0.444 0.510 0.505 0.500

download these results as csv

MIREX 2008 Audio Genre Classification Evaluation Logs and Confusion Matrices

MIREX 2008 Audio Genre Classification Run Times

Participant Runtime (hh:mm) / Fold
CL1 Feat Ex: 01:29 Train/Classify: 0:33
CL2 Feat Ex: 01:31 Train/Classify: 01:01
GP1 Feat Ex: 11:37 Train/Classify: 00:25
GT1 Feat Ex/Train/Classify: 00:36
GT2 Feat Ex/Train/Classify: 00:35
GT3 Feat Ex: 00:12 Train/Classify: 00:01
LRPPI1 Feat Ex: 28:50 Train/Classify: 00:02
LRPPI2 Feat Ex: 28:50 Train/Classify: 00:17
LRPPI3 Feat Ex: 28:50 Train/Classify: 00:20
LRPPI4 Feat Ex: 28:50 Train/Classify: 00:35
ME1 Feat Ex: 3:35 Train/Classify: 00:02
ME2 Feat Ex: 3:35 Train/Classify: 00:02
ME3 Feat Ex: 3:35 Train/Classify: 00:02

download these results as csv

CSV Files Without Rounding

audiogenre_results_fold.csv
audiogenre_results_class.csv

Results By Algorithm

(.tar.gz)
CL1 = C. Cao, M. Li 1
CL2 = C. Cao, M. Li 2
LRPPI1 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de León, J. M. Iñesta 1
LRPPI2 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de León, J. M. Iñesta 2
LRPPI3 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de León, J. M. Iñesta 3
LRPPI4 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de León, J. M. Iñesta 4
ME1 = I. M. Mandel, D. P. W. Ellis 1
ME2 = I. M. Mandel, D. P. W. Ellis 2
ME3 = I. M. Mandel, D. P. W. Ellis 3
GP = G. Peeters
GT1 = G. Tzanetakis
GT2 = G. Tzanetakis
GT3 = G. Tzanetakis

Task 2 (LATIN) Results

MIREX 2008 Audio Genre Classification Summary Results - Raw Classification Accuracy Averaged Over Three Train/Test Folds

Participant Average Classifcation Accuracy
CL1 65.17%
CL2 64.04%
GP1 62.72%
GT1 53.65%
GT2 53.79%
GT3 53.67%
LRPPI1 58.64%
LRPPI2 62.23%
LRPPI3 59.55%
LRPPI4 59.00%
ME1 54.15%
ME2 54.70%
ME3 54.99%

download these results as csv

Accuracy Across Folds
Classification fold CL1 CL2 GP1 GT1 GT2 GT3 LRPPI1 LRPPI2 LRPPI3 LRPPI4 ME1 ME2 ME3
0 0.755 0.750 0.694 0.674 0.677 0.657 0.661 0.697 0.671 0.680 0.681 0.684 0.685
1 0.541 0.528 0.553 0.435 0.435 0.422 0.512 0.573 0.526 0.506 0.403 0.409 0.415
2 0.660 0.644 0.634 0.501 0.502 0.531 0.587 0.597 0.590 0.585 0.541 0.548 0.550

download these results as csv

Accuracy Across Categories
Class CL1 CL2 GP1 GT1 GT2 GT3 LRPPI1 LRPPI2 LRPPI3 LRPPI4 ME1 ME2 ME3
axe 0.753 0.745 0.558 0.637 0.640 0.695 0.529 0.560 0.537 0.528 0.679 0.679 0.681
bachata 0.957 0.622 0.969 0.595 0.592 0.587 0.957 0.950 0.956 0.957 0.932 0.935 0.935
bolero 0.630 0.633 0.768 0.702 0.705 0.746 0.683 0.726 0.646 0.668 0.664 0.662 0.666
forro 0.356 0.335 0.270 0.146 0.145 0.127 0.258 0.342 0.292 0.287 0.174 0.186 0.188
gaucha 0.501 0.491 0.345 0.348 0.348 0.299 0.345 0.357 0.327 0.338 0.435 0.436 0.434
merengue 0.895 0.898 0.897 0.812 0.806 0.784 0.847 0.794 0.825 0.833 0.698 0.699 0.728
pagode 0.355 0.368 0.303 0.307 0.297 0.249 0.322 0.391 0.361 0.318 0.231 0.240 0.243
salsa 0.886 0.850 0.750 0.715 0.719 0.668 0.788 0.793 0.769 0.766 0.698 0.710 0.716
sertaneja 0.209 0.205 0.200 0.159 0.186 0.212 0.132 0.227 0.210 0.170 0.090 0.090 0.094
tango 0.590 0.587 0.585 0.588 0.588 0.582 0.592 0.581 0.586 0.590 0.588 0.588 0.588

download these results as csv

MIREX 2008 Audio Genre Classification Evaluation Logs and Confusion Matrices

MIREX 2008 Audio Genre Classification Run Times

Participant Runtime (hh:mm) / Fold
CL1 Feat Ex: 00:47 Train/Classify: 0:13
CL2 Feat Ex: 00:48 Train/Classify: 00:23
GP1 Feat Ex: 07:12 Train/Classify: 00:15
GT1 Feat Ex/Train/Classify: 00:16
GT2 Feat Ex/Train/Classify: 00:17
GT3 Feat Ex: 00:06 Train/Classify: 00:00 (6 sec)
LRPPI1 Feat Ex: 15:33 Train/Classify: 00:01
LRPPI2 Feat Ex: 15:33 Train/Classify: 00:06
LRPPI3 Feat Ex: 15:33 Train/Classify: 00:06
LRPPI4 Feat Ex: 15:33 Train/Classify: 00:11
ME1 Feat Ex: 1:58 Train/Classify: 00:00 (28 sec)
ME2 Feat Ex: 1:58 Train/Classify: 00:00 (28 sec)
ME3 Feat Ex: 1:58 Train/Classify: 00:00 (28 sec)

download these results as csv

CSV Files Without Rounding

audiolatin_results_fold.csv
audiolatin_results_class.csv

Results By Algorithm

(.tar.gz)
CL1 = C. Cao, M. Li 1
CL2 = C. Cao, M. Li 2
GP1 = G. Peeters
GT1 = G. Tzanetakis
GT2 = G. Tzanetakis
GT3 = G. Tzanetakis
LRPPI1 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de León, J. M. Iñesta 1
LRPPI2 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de León, J. M. Iñesta 2
LRPPI3 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de León, J. M. Iñesta 3
LRPPI4 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de León, J. M. Iñesta 4
ME1 = I. M. Mandel, D. P. W. Ellis 1
ME2 = I. M. Mandel, D. P. W. Ellis 2
ME3 = I. M. Mandel, D. P. W. Ellis 3

Friedman's Test for Significant Differences

Task 1 (Mixed) Classes vs. Systems

The Friedman test was run in MATLAB against the average accuracy for each class.

Friedman's Anova Table
Source SS df MS Chi-sq Prob>Chi-sq
Columns 243.6 10 24.36 22.15 0.0144
Error 856.4 90 9.5156
Total 1100 109

download these results as csv

Tukey-Kramer HSD Multi-Comparison

The Tukey-Kramer HSD multi-comparison data below was generated using the following MATLAB instruction. Command: [c, m, h, gnames] = multicompare(stats, 'ctype', 'tukey-kramer', 'estimate', 'friedman', 'alpha', 0.05);

TeamID TeamID Lowerbound Mean Upperbound Significance
CL1 CL2 -5.5740 -0.8000 3.9740 FALSE
CL1 GP1 -5.1740 -0.4000 4.3740 FALSE
CL1 GT1 -5.0740 -0.3000 4.4740 FALSE
CL1 GT2 -3.3740 1.4000 6.1740 FALSE
CL1 GT3 -3.5740 1.2000 5.9740 FALSE
CL1 LRPPI1 -3.4740 1.3000 6.0740 FALSE
CL1 LRPPI2 -2.3740 2.4000 7.1740 FALSE
CL1 LRPPI3 -2.4740 2.3000 7.0740 FALSE
CL1 LRPPI4 -1.1740 3.6000 8.3740 FALSE
CL1 ME1 -1.1740 3.6000 8.3740 FALSE
CL2 GP1 -4.3740 0.4000 5.1740 FALSE
CL2 GT1 -4.2740 0.5000 5.2740 FALSE
CL2 GT2 -2.5740 2.2000 6.9740 FALSE
CL2 GT3 -2.7740 2.0000 6.7740 FALSE
CL2 LRPPI1 -2.6740 2.1000 6.8740 FALSE
CL2 LRPPI2 -1.5740 3.2000 7.9740 FALSE
CL2 LRPPI3 -1.6740 3.1000 7.8740 FALSE
CL2 LRPPI4 -0.3740 4.4000 9.1740 FALSE
CL2 ME1 -0.3740 4.4000 9.1740 FALSE
GP1 GT1 -4.6740 0.1000 4.8740 FALSE
GP1 GT2 -2.9740 1.8000 6.5740 FALSE
GP1 GT3 -3.1740 1.6000 6.3740 FALSE
GP1 LRPPI1 -3.0740 1.7000 6.4740 FALSE
GP1 LRPPI2 -1.9740 2.8000 7.5740 FALSE
GP1 LRPPI3 -2.0740 2.7000 7.4740 FALSE
GP1 LRPPI4 -0.7740 4.0000 8.7740 FALSE
GP1 ME1 -0.7740 4.0000 8.7740 FALSE
GT1 GT2 -3.0740 1.7000 6.4740 FALSE
GT1 GT3 -3.2740 1.5000 6.2740 FALSE
GT1 LRPPI1 -3.1740 1.6000 6.3740 FALSE
GT1 LRPPI2 -2.0740 2.7000 7.4740 FALSE
GT1 LRPPI3 -2.1740 2.6000 7.3740 FALSE
GT1 LRPPI4 -0.8740 3.9000 8.6740 FALSE
GT1 ME1 -0.8740 3.9000 8.6740 FALSE
GT2 GT3 -4.9740 -0.2000 4.5740 FALSE
GT2 LRPPI1 -4.8740 -0.1000 4.6740 FALSE
GT2 LRPPI2 -3.7740 1.0000 5.7740 FALSE
GT2 LRPPI3 -3.8740 0.9000 5.6740 FALSE
GT2 LRPPI4 -2.5740 2.2000 6.9740 FALSE
GT2 ME1 -2.5740 2.2000 6.9740 FALSE
GT3 LRPPI1 -4.6740 0.1000 4.8740 FALSE
GT3 LRPPI2 -3.5740 1.2000 5.9740 FALSE
GT3 LRPPI3 -3.6740 1.1000 5.8740 FALSE
GT3 LRPPI4 -2.3740 2.4000 7.1740 FALSE
GT3 ME1 -2.3740 2.4000 7.1740 FALSE
LRPPI1 LRPPI2 -3.6740 1.1000 5.8740 FALSE
LRPPI1 LRPPI3 -3.7740 1.0000 5.7740 FALSE
LRPPI1 LRPPI4 -2.4740 2.3000 7.0740 FALSE
LRPPI1 ME1 -2.4740 2.3000 7.0740 FALSE
LRPPI2 LRPPI3 -4.8740 -0.1000 4.6740 FALSE
LRPPI2 LRPPI4 -3.5740 1.2000 5.9740 FALSE
LRPPI2 ME1 -3.5740 1.2000 5.9740 FALSE
LRPPI3 LRPPI4 -3.4740 1.3000 6.0740 FALSE
LRPPI3 ME1 -3.4740 1.3000 6.0740 FALSE
LRPPI4 ME1 -4.7740 0.0000 4.7740 FALSE

download these results as csv

2008 genremixed.perclassaccuracy.friedman.tukeykramerhsd.png

Task 1 (Mixed) Folds vs. Systems

The Friedman test was run in MATLAB against the accuracy for each fold.

Friedman's Anova Table
Source SS df MS Chi-sq Prob>Chi-sq
Columns 255.333 10 25.5333 23.21 0.01
Error 74.667 20 3.7333
Total 330 32

download these results as csv

Tukey-Kramer HSD Multi-Comparison

The Tukey-Kramer HSD multi-comparison data below was generated using the following MATLAB instruction. Command: [c, m, h, gnames] = multicompare(stats, 'ctype', 'tukey-kramer', 'estimate', 'friedman', 'alpha', 0.05);

TeamID TeamID Lowerbound Mean Upperbound Significance
CL1 CL2 -7.3828 1.3333 10.0495 FALSE
CL1 GP1 -6.7162 2.0000 10.7162 FALSE
CL1 GT1 -6.7162 2.0000 10.7162 FALSE
CL1 GT2 -6.0495 2.6667 11.3828 FALSE
CL1 GT3 -4.0495 4.6667 13.3828 FALSE
CL1 LRPPI1 -3.7162 5.0000 13.7162 FALSE
CL1 LRPPI2 -2.3828 6.3333 15.0495 FALSE
CL1 LRPPI3 -1.7162 7.0000 15.7162 FALSE
CL1 LRPPI4 -0.3828 8.3333 17.0495 FALSE
CL1 ME1 -0.3828 8.3333 17.0495 FALSE
CL2 GP1 -8.0495 0.6667 9.3828 FALSE
CL2 GT1 -8.0495 0.6667 9.3828 FALSE
CL2 GT2 -7.3828 1.3333 10.0495 FALSE
CL2 GT3 -5.3828 3.3333 12.0495 FALSE
CL2 LRPPI1 -5.0495 3.6667 12.3828 FALSE
CL2 LRPPI2 -3.7162 5.0000 13.7162 FALSE
CL2 LRPPI3 -3.0495 5.6667 14.3828 FALSE
CL2 LRPPI4 -1.7162 7.0000 15.7162 FALSE
CL2 ME1 -1.7162 7.0000 15.7162 FALSE
GP1 GT1 -8.7162 0.0000 8.7162 FALSE
GP1 GT2 -8.0495 0.6667 9.3828 FALSE
GP1 GT3 -6.0495 2.6667 11.3828 FALSE
GP1 LRPPI1 -5.7162 3.0000 11.7162 FALSE
GP1 LRPPI2 -4.3828 4.3333 13.0495 FALSE
GP1 LRPPI3 -3.7162 5.0000 13.7162 FALSE
GP1 LRPPI4 -2.3828 6.3333 15.0495 FALSE
GP1 ME1 -2.3828 6.3333 15.0495 FALSE
GT1 GT2 -8.0495 0.6667 9.3828 FALSE
GT1 GT3 -6.0495 2.6667 11.3828 FALSE
GT1 LRPPI1 -5.7162 3.0000 11.7162 FALSE
GT1 LRPPI2 -4.3828 4.3333 13.0495 FALSE
GT1 LRPPI3 -3.7162 5.0000 13.7162 FALSE
GT1 LRPPI4 -2.3828 6.3333 15.0495 FALSE
GT1 ME1 -2.3828 6.3333 15.0495 FALSE
GT2 GT3 -6.7162 2.0000 10.7162 FALSE
GT2 LRPPI1 -6.3828 2.3333 11.0495 FALSE
GT2 LRPPI2 -5.0495 3.6667 12.3828 FALSE
GT2 LRPPI3 -4.3828 4.3333 13.0495 FALSE
GT2 LRPPI4 -3.0495 5.6667 14.3828 FALSE
GT2 ME1 -3.0495 5.6667 14.3828 FALSE
GT3 LRPPI1 -8.3828 0.3333 9.0495 FALSE
GT3 LRPPI2 -7.0495 1.6667 10.3828 FALSE
GT3 LRPPI3 -6.3828 2.3333 11.0495 FALSE
GT3 LRPPI4 -5.0495 3.6667 12.3828 FALSE
GT3 ME1 -5.0495 3.6667 12.3828 FALSE
LRPPI1 LRPPI2 -7.3828 1.3333 10.0495 FALSE
LRPPI1 LRPPI3 -6.7162 2.0000 10.7162 FALSE
LRPPI1 LRPPI4 -5.3828 3.3333 12.0495 FALSE
LRPPI1 ME1 -5.3828 3.3333 12.0495 FALSE
LRPPI2 LRPPI3 -8.0495 0.6667 9.3828 FALSE
LRPPI2 LRPPI4 -6.7162 2.0000 10.7162 FALSE
LRPPI2 ME1 -6.7162 2.0000 10.7162 FALSE
LRPPI3 LRPPI4 -7.3828 1.3333 10.0495 FALSE
LRPPI3 ME1 -7.3828 1.3333 10.0495 FALSE
LRPPI4 ME1 -8.7162 0.0000 8.7162 FALSE

download these results as csv

2008 genremixed.perfoldaccuracy.friedman.tukeykramerhsd.png


Task 2 (Latin) Classes vs. Systems

The Friedman test was run in MATLAB against the average accuracy for each class.

Friedman's Anova Table
Source SS df MS Chi-sq Prob>Chi-sq
Columns 235 10 23.5 21.38 0.0186
Error 864 90 9.6
Total 1099 109

download these results as csv

Tukey-Kramer HSD Multi-Comparison

The Tukey-Kramer HSD multi-comparison data below was generated using the following MATLAB instruction. Command: [c, m, h, gnames] = multicompare(stats, 'ctype', 'tukey-kramer', 'estimate', 'friedman', 'alpha', 0.05);

TeamID TeamID Lowerbound Mean Upperbound Significance
CL1 CL2 -3.7219 1.0500 5.8219 FALSE
CL1 GP1 -3.2219 1.5500 6.3219 FALSE
CL1 GT1 -2.3219 2.4500 7.2219 FALSE
CL1 GT2 -1.7219 3.0500 7.8219 FALSE
CL1 GT3 -1.7719 3.0000 7.7719 FALSE
CL1 LRPPI1 -2.1219 2.6500 7.4219 FALSE
CL1 LRPPI2 -0.2219 4.5500 9.3219 FALSE
CL1 LRPPI3 -0.7719 4.0000 8.7719 FALSE
CL1 LRPPI4 -0.6719 4.1000 8.8719 FALSE
CL1 ME1 0.1781 4.9500 9.7219 TRUE
CL2 GP1 -4.2719 0.5000 5.2719 FALSE
CL2 GT1 -3.3719 1.4000 6.1719 FALSE
CL2 GT2 -2.7719 2.0000 6.7719 FALSE
CL2 GT3 -2.8219 1.9500 6.7219 FALSE
CL2 LRPPI1 -3.1719 1.6000 6.3719 FALSE
CL2 LRPPI2 -1.2719 3.5000 8.2719 FALSE
CL2 LRPPI3 -1.8219 2.9500 7.7219 FALSE
CL2 LRPPI4 -1.7219 3.0500 7.8219 FALSE
CL2 ME1 -0.8719 3.9000 8.6719 FALSE
GP1 GT1 -3.8719 0.9000 5.6719 FALSE
GP1 GT2 -3.2719 1.5000 6.2719 FALSE
GP1 GT3 -3.3219 1.4500 6.2219 FALSE
GP1 LRPPI1 -3.6719 1.1000 5.8719 FALSE
GP1 LRPPI2 -1.7719 3.0000 7.7719 FALSE
GP1 LRPPI3 -2.3219 2.4500 7.2219 FALSE
GP1 LRPPI4 -2.2219 2.5500 7.3219 FALSE
GP1 ME1 -1.3719 3.4000 8.1719 FALSE
GT1 GT2 -4.1719 0.6000 5.3719 FALSE
GT1 GT3 -4.2219 0.5500 5.3219 FALSE
GT1 LRPPI1 -4.5719 0.2000 4.9719 FALSE
GT1 LRPPI2 -2.6719 2.1000 6.8719 FALSE
GT1 LRPPI3 -3.2219 1.5500 6.3219 FALSE
GT1 LRPPI4 -3.1219 1.6500 6.4219 FALSE
GT1 ME1 -2.2719 2.5000 7.2719 FALSE
GT2 GT3 -4.8219 -0.0500 4.7219 FALSE
GT2 LRPPI1 -5.1719 -0.4000 4.3719 FALSE
GT2 LRPPI2 -3.2719 1.5000 6.2719 FALSE
GT2 LRPPI3 -3.8219 0.9500 5.7219 FALSE
GT2 LRPPI4 -3.7219 1.0500 5.8219 FALSE
GT2 ME1 -2.8719 1.9000 6.6719 FALSE
GT3 LRPPI1 -5.1219 -0.3500 4.4219 FALSE
GT3 LRPPI2 -3.2219 1.5500 6.3219 FALSE
GT3 LRPPI3 -3.7719 1.0000 5.7719 FALSE
GT3 LRPPI4 -3.6719 1.1000 5.8719 FALSE
GT3 ME1 -2.8219 1.9500 6.7219 FALSE
LRPPI1 LRPPI2 -2.8719 1.9000 6.6719 FALSE
LRPPI1 LRPPI3 -3.4219 1.3500 6.1219 FALSE
LRPPI1 LRPPI4 -3.3219 1.4500 6.2219 FALSE
LRPPI1 ME1 -2.4719 2.3000 7.0719 FALSE
LRPPI2 LRPPI3 -5.3219 -0.5500 4.2219 FALSE
LRPPI2 LRPPI4 -5.2219 -0.4500 4.3219 FALSE
LRPPI2 ME1 -4.3719 0.4000 5.1719 FALSE
LRPPI3 LRPPI4 -4.6719 0.1000 4.8719 FALSE
LRPPI3 ME1 -3.8219 0.9500 5.7219 FALSE
LRPPI4 ME1 -3.9219 0.8500 5.6219 FALSE

download these results as csv

2008 genrelatin.perclassaccuracy.friedman.tukeykramerhsd.png

Task 2 (Latin) Folds vs. Systems

The Friedman test was run in MATLAB against the accuracy for each fold.

Friedman's Anova Table
Source SS df MS Chi-sq Prob>Chi-sq
Columns 265.833 10 26.5833 24.2 0.0071
Error 63.667 20 3.1833
Total 329.5 32

download these results as csv

Tukey-Kramer HSD Multi-Comparison

The Tukey-Kramer HSD multi-comparison data below was generated using the following MATLAB instruction. Command: [c, m, h, gnames] = multicompare(stats, 'ctype', 'tukey-kramer', 'estimate', 'friedman', 'alpha', 0.05);

TeamID TeamID Lowerbound Mean Upperbound Significance
CL1 CL2 -7.7095 1.0000 9.7095 FALSE
CL1 GP1 -7.3762 1.3333 10.0429 FALSE
CL1 GT1 -7.7095 1.0000 9.7095 FALSE
CL1 GT2 -4.0429 4.6667 13.3762 FALSE
CL1 GT3 -3.7095 5.0000 13.7095 FALSE
CL1 LRPPI1 -3.0429 5.6667 14.3762 FALSE
CL1 LRPPI2 -2.3762 6.3333 15.0429 FALSE
CL1 LRPPI3 -1.8762 6.8333 15.5429 FALSE
CL1 LRPPI4 -0.3762 8.3333 17.0429 FALSE
CL1 ME1 -1.2095 7.5000 16.2095 FALSE
CL2 GP1 -8.3762 0.3333 9.0429 FALSE
CL2 GT1 -8.7095 0.0000 8.7095 FALSE
CL2 GT2 -5.0429 3.6667 12.3762 FALSE
CL2 GT3 -4.7095 4.0000 12.7095 FALSE
CL2 LRPPI1 -4.0429 4.6667 13.3762 FALSE
CL2 LRPPI2 -3.3762 5.3333 14.0429 FALSE
CL2 LRPPI3 -2.8762 5.8333 14.5429 FALSE
CL2 LRPPI4 -1.3762 7.3333 16.0429 FALSE
CL2 ME1 -2.2095 6.5000 15.2095 FALSE
GP1 GT1 -9.0429 -0.3333 8.3762 FALSE
GP1 GT2 -5.3762 3.3333 12.0429 FALSE
GP1 GT3 -5.0429 3.6667 12.3762 FALSE
GP1 LRPPI1 -4.3762 4.3333 13.0429 FALSE
GP1 LRPPI2 -3.7095 5.0000 13.7095 FALSE
GP1 LRPPI3 -3.2095 5.5000 14.2095 FALSE
GP1 LRPPI4 -1.7095 7.0000 15.7095 FALSE
GP1 ME1 -2.5429 6.1667 14.8762 FALSE
GT1 GT2 -5.0429 3.6667 12.3762 FALSE
GT1 GT3 -4.7095 4.0000 12.7095 FALSE
GT1 LRPPI1 -4.0429 4.6667 13.3762 FALSE
GT1 LRPPI2 -3.3762 5.3333 14.0429 FALSE
GT1 LRPPI3 -2.8762 5.8333 14.5429 FALSE
GT1 LRPPI4 -1.3762 7.3333 16.0429 FALSE
GT1 ME1 -2.2095 6.5000 15.2095 FALSE
GT2 GT3 -8.3762 0.3333 9.0429 FALSE
GT2 LRPPI1 -7.7095 1.0000 9.7095 FALSE
GT2 LRPPI2 -7.0429 1.6667 10.3762 FALSE
GT2 LRPPI3 -6.5429 2.1667 10.8762 FALSE
GT2 LRPPI4 -5.0429 3.6667 12.3762 FALSE
GT2 ME1 -5.8762 2.8333 11.5429 FALSE
GT3 LRPPI1 -8.0429 0.6667 9.3762 FALSE
GT3 LRPPI2 -7.3762 1.3333 10.0429 FALSE
GT3 LRPPI3 -6.8762 1.8333 10.5429 FALSE
GT3 LRPPI4 -5.3762 3.3333 12.0429 FALSE
GT3 ME1 -6.2095 2.5000 11.2095 FALSE
LRPPI1 LRPPI2 -8.0429 0.6667 9.3762 FALSE
LRPPI1 LRPPI3 -7.5429 1.1667 9.8762 FALSE
LRPPI1 LRPPI4 -6.0429 2.6667 11.3762 FALSE
LRPPI1 ME1 -6.8762 1.8333 10.5429 FALSE
LRPPI2 LRPPI3 -8.2095 0.5000 9.2095 FALSE
LRPPI2 LRPPI4 -6.7095 2.0000 10.7095 FALSE
LRPPI2 ME1 -7.5429 1.1667 9.8762 FALSE
LRPPI3 LRPPI4 -7.2095 1.5000 10.2095 FALSE
LRPPI3 ME1 -8.0429 0.6667 9.3762 FALSE
LRPPI4 ME1 -9.5429 -0.8333 7.8762 FALSE

download these results as csv

2008 genrelatin.perfoldaccuracy.friedman.tukeykramerhsd.png