Difference between revisions of "2009:Audio Music Mood Classification Results"

From MIREX Wiki
(Results By Algorithm)
 
(31 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 
==Introduction==
 
==Introduction==
  
These are the results for the 2009 running of the [[Audio Music Mood Classification]] task. For background information about this task set please refer to the Audio Music Mood Classification page.  
+
These are the results for the 2009 running of the Audio Music Mood Classification task. For background information about this task set please refer to the [[2009:Audio Music Mood Classification]] page. The data was created by Xiao Hu and consists of 600 files organized into 5 mood "clusters".
===General Legend===
+
=== Mood Clusters ===
==== Team ID ====
+
The 5 mood clusters were derived from the AMG mood repository.
 +
    * Cluster_1: passionate, rousing, confident,boisterous, rowdy
 +
    * Cluster_2: rollicking, cheerful, fun, sweet, amiable/good natured
 +
    * Cluster_3: literate, poignant, wistful, bittersweet, autumnal, brooding
 +
    * Cluster_4: humorous, silly, campy, quirky, whimsical, witty, wry
 +
    * Cluster_5: aggressive, fiery,tense/anxious, intense, volatile,visceral
 +
For more information on the clusters, please see
 +
 
 +
[http://ismir2007.ismir.net/proceedings/ISMIR2007_p067_hu.pdf Hu, Xiao and J. Stephen Downie (2007)] '''Exploring mood metadata: Relationships with genre, artist and usage metadata''', In the 8th International Conference on Music Information Retrieval (ISMIR 2007), Vienna, September 23-27, 2007.
 +
 
 +
=== Data ===
 +
There are 600 audio clips with 120 in each mood cluster. Each clip belongs to only one mood cluster.
 +
The clips were chosen from the [http://www.apmmusic.com APM] audio set .
 +
 
 +
The mood cluster labels of the clips were firstly suggested by their metadata provided by APM and then decided by human validations using the [[2007:Evalutron6000_Walkthrough_For_Audio_Mood_Classification]]
  
'''ANO'''= [https://music-ir.org Anonymous]<br />
+
Each mood cluster covers a variety of genres: each category covers about 7 major genres (with 20-30 tracks each) and a few minor genres, and the distribution among major genres within each category is made as even as possible.
'''BP1'''= [Juan José Burred, Geoffroy Peeters (file)]<br />
 
'''BP2''' = [Juan José Burred, Geoffroy Peeters (tw)]<br />
 
'''CL1''' = [Chuan Cao, Ming Li]<br />
 
'''CL2''' = [Chuan Cao, Ming Li]<br />
 
'''FCY1''' = [Tao Feng, XiaoOu Chen, DeShun Yang]<br />
 
'''FCY2''' = [Tao Feng, XiaoOu Chen, DeShun Yang]<br />
 
'''GP'''  = [Geoffroy Peeters]<br />
 
'''GT1''' = [George Tzanetakis (mono)]<br />
 
'''GT2''' = [George Tzanetakis (stereo)]<br />
 
'''GLR1''' = [A. Grecu, T. Lidy, A. Rauber (full)]<br />
 
'''GLR2''' = [A. Grecu, T. Lidy, A. Rauber (template)]<br />
 
'''HNOS1''' = [Takashi Hasegawa, Takuya Nishimoto, Nobutaka Ono, Shigeki Sagayama (tcca)]<br />
 
'''HNOS2''' = [Takashi Hasegawa, Takuya Nishimoto, Nobutaka Ono, Shigeki Sagayama (tcck)]<br />
 
'''HNOS3''' = [Takashi Hasegawa, Takuya Nishimoto, Nobutaka Ono, Shigeki Sagayama (tccl)]<br />
 
'''HNOS4''' = [Takashi Hasegawa, Takuya Nishimoto, Nobutaka Ono, Shigeki Sagayama (tcpk)]<br />
 
'''HW1'''  = [Huaxin Wang]<br />
 
'''HW2'''  = [Huaxin Wang]<br />
 
'''VA1''' = [T. Lidy, A. Grecu, A. Rauber, A. Pertusa, P. J. Ponce de Léon, J. M. Iñesta (WMV)]<br />
 
'''VA2''' = [T. Lidy, A. Grecu, A. Rauber, A. Pertusa, P. J. Ponce de Léon, J. M. Iñesta (BWWV)]<br />
 
'''LZG''' = [Yi Liu, Tao Zheng, Yue Gao (RUC_1)]<br />
 
'''RK1''' = [Preeti Rao, Sujeet Kini]<br />
 
'''RK2''' = [Preeti Rao, Sujeet Kini]<br />
 
'''RCJ1''' = [Jia-Min Ren, Zhi-Sheng Chen, Jyh-Shing Roger Jang]<br />
 
'''RCJ2''' = [Jia-Min Ren, Zhi-Sheng Chen, Jyh-Shing Roger Jang]<br />
 
'''RCJ3''' = [Jia-Min Ren, Zhi-Sheng Chen, Jyh-Shing Roger Jang]<br />
 
'''RCJ4''' = [Jia-Min Ren, Zhi-Sheng Chen, Jyh-Shing Roger Jang]<br />
 
'''SS''' = [Klaus Seyerlehner, Markus Schedl]<br />
 
'''TAOS'''= [Emiru Tsunoo, Taichi Akase, Nobutaka Ono, Shigeki Sagayama]<br />
 
'''TTOS''' = [Emiru Tsunoo, George Tzanetakis, Nobutaka Ono, Shigeki Sagayama]<br />
 
'''MTG1''' = [N. Wack, E. Guaus, C. Laurier, O. Meyers, R. Marxer, D. Bogdanov, J. Serrà, P. Herrera (false, rca)]<br />
 
'''MTG2''' = [N. Wack, E. Guaus, C. Laurier, O. Meyers, R. Marxer, D. Bogdanov, J. Serrà, P. Herrera (true, rca)]<br />
 
'''MTG3''' = [N. Wack, E. Guaus, C. Laurier, O. Meyers, R. Marxer, D. Bogdanov, J. Serrà, P. Herrera (false, simca)]<br />
 
'''MTG4''' = [N. Wack, E. Guaus, C. Laurier, O. Meyers, R. Marxer, D. Bogdanov, J. Serrà, P. Herrera (true, simca)]<br />
 
'''MTG5''' = [N. Wack, E. Guaus, C. Laurier, O. Meyers, R. Marxer, D. Bogdanov, J. Serrà, P. Herrera (false, svm)]<br />
 
'''MTG6''' = [N. Wack, E. Guaus, C. Laurier, O. Meyers, R. Marxer, D. Bogdanov, J. Serrà, P. Herrera (true, svm)]<br />
 
'''XLZZG''' = [Jieping Xu, Yi Liu, Tao Zheng, Chao Zhen, Yue Gao (RUC_1)]<br />
 
'''XZZ''' = [JiePing Xu, Chao Zhen, Tao Zheng (RUC_2)]<br />
 
  
 +
Audio format: 30 second clips, 22.05kHz, mono, 16bit, WAV files;
 +
The data were evenly split into 3 folds.
  
 +
For more information on the dataset and evaluation methods, please see
  
==Overall Summary Results==
+
[http://ismir2008.ismir.net/papers/ISMIR2008_263.pdf X. Hu, J. S. Downie, C. Laurier, M. Bay, A.Ehmann (2008)] '''The 2007 MIREX Audio Mood Classification Task: Lessons Learned''', In the 9th International Symposium on Music Information Retrieval (ISMIR 2008), Philadelphia, Sept. 2008
===MIREX 2009 Audio Mood Classification Summary Results - Raw Classification Accuracy Averaged Over Three Train/Test Folds===
 
  
<csv p=3>audiomood/summary_audiomood.csv</csv>
 
  
=====Accuracy Across Folds=====
+
---------------------------------------------------
  
<csv p=3>audiomood/audiomood_Accuracy.csv</csv>
+
===General Legend===
 +
==== Team ID ====
  
=====Accuracy Across Categories=====
+
'''ANO'''= [https://www.music-ir.org/mirex/abstracts/2009/ANO_train_simi.pdf Anonymous]<br />
 +
'''BP1'''= [https://www.music-ir.org/mirex/abstracts/2009/BP_train_tag.pdf Juan José Burred, Geoffroy Peeters (file)]<br />
 +
'''BP2''' = [https://www.music-ir.org/mirex/abstracts/2009/BP_train_tag.pdf Juan José Burred, Geoffroy Peeters (tw)]<br />
 +
'''CL1''' = [https://www.music-ir.org/mirex/abstracts/2009/CL.pdf Chuan Cao, Ming Li]<br />
 +
'''CL2''' = [https://www.music-ir.org/mirex/abstracts/2009/CL.pdf  Chuan Cao, Ming Li]<br />
 +
'''FCY1''' = [https://www.music-ir.org/mirex/abstracts/2009/ Tao Feng, XiaoOu Chen, DeShun Yang]<br />
 +
'''FCY2''' = [https://www.music-ir.org/mirex/abstracts/2009/ Tao Feng, XiaoOu Chen, DeShun Yang]<br />
 +
'''GP'''  = [https://www.music-ir.org/mirex/abstracts/2009/Peeters_2009_MIREX_classification.pdf Geoffroy Peeters]<br />
 +
'''GT1''' = [https://www.music-ir.org/mirex/abstracts/2009/GTfinal.pdf George Tzanetakis (mono)]<br />
 +
'''GT2''' = [https://www.music-ir.org/mirex/abstracts/2009/GTfinal.pdf  George Tzanetakis (stereo)]<br />
 +
'''GLR1''' = [https://www.music-ir.org/mirex/abstracts/2009/GLR.pdf Andrei Grecu, Thomas Lidy, Andreas Rauber (full)]<br />
 +
'''GLR2''' = [https://www.music-ir.org/mirex/abstracts/2009/GLR.pdf Andrei Grecu, Thomas Lidy, Andreas Rauber (template)]<br />
 +
'''HNOS1''' = [https://www.music-ir.org/mirex/abstracts/2009/HNOS.pdf Takashi Hasegawa, Takuya Nishimoto, Nobutaka Ono, Shigeki Sagayama (tcca)]<br />
 +
'''HNOS2''' = [https://www.music-ir.org/mirex/abstracts/2009/HNOS.pdf Takashi Hasegawa, Takuya Nishimoto, Nobutaka Ono, Shigeki Sagayama (tcck)]<br />
 +
'''HNOS3''' = [https://www.music-ir.org/mirex/abstracts/2009/HNOS.pdf Takashi Hasegawa, Takuya Nishimoto, Nobutaka Ono, Shigeki Sagayama (tccl)]<br />
 +
'''HNOS4''' = [https://www.music-ir.org/mirex/abstracts/2009/HNOS.pdf Takashi Hasegawa, Takuya Nishimoto, Nobutaka Ono, Shigeki Sagayama (tcpk)]<br />
 +
'''HW1'''  = [https://www.music-ir.org/mirex/abstracts/2009/HW_train.pdf Huaxin Wang]<br />
 +
'''HW2'''  = [https://www.music-ir.org/mirex/abstracts/2009/HW_train.pdf Huaxin Wang]<br />
 +
'''VA1''' = [https://www.music-ir.org/mirex/abstracts/2009/VA.pdf  Thomas Lidy, Andrei Grecu, Andreas Rauber, A. Pertusa, P. J. Ponce de León, J. M. Iñesta (WMV)]<br />
 +
'''VA2''' = [https://www.music-ir.org/mirex/abstracts/2009/VA.pdf  Thomas Lidy, Andrei Grecu, Andreas Rauber, A. Pertusa, P. J. Ponce de León, J. M. Iñesta (BWWV)]<br />
 +
'''LZG''' = [https://www.music-ir.org/mirex/abstracts/2009/LZG.pdf Yi Liu, Tao Zheng, Yue Gao (RUC_1)]<br />
 +
'''RK1''' = [https://www.music-ir.org/mirex/abstracts/2009/RK.pdf Preeti Rao, Sujeet Kini]<br />
 +
'''RK2''' = [https://www.music-ir.org/mirex/abstracts/2009/K.pdf Preeti Rao, Sujeet Kini]<br />
 +
'''SS''' = [https://www.music-ir.org/mirex/abstracts/2009/SS.pdf Klaus Seyerlehner, Markus Schedl]<br />
 +
'''TAOS'''= [https://www.music-ir.org/mirex/abstracts/2009/TAOS.pdf Emiru Tsunoo, Taichi Akase, Nobutaka Ono, Shigeki Sagayama]<br />
 +
'''MTG1''' = [https://www.music-ir.org/mirex/abstracts/2009/MTG_train.pdf Nicolas Wack, Enric Guaus, Cyril Laurier, Owen Meyers, Ricard Marxer, Dmitry Bogdanov, Joan Serrà, Perfecto Herrera  (false, rca)]<br />
 +
'''MTG2''' = [https://www.music-ir.org/mirex/abstracts/2009/MTG_train.pdf Nicolas Wack, Enric Guaus, Cyril Laurier, Owen Meyers, Ricard Marxer, Dmitry Bogdanov, Joan Serrà, Perfecto Herrera  (true, rca)]<br />
 +
'''MTG3''' = [https://www.music-ir.org/mirex/abstracts/2009/MTG_train.pdf Nicolas Wack, Enric Guaus, Cyril Laurier, Owen Meyers, Ricard Marxer, Dmitry Bogdanov, Joan Serrà, Perfecto Herrera  (false, simca)]<br />
 +
'''MTG4''' = [https://www.music-ir.org/mirex/abstracts/2009/MTG_train.pdf Nicolas Wack, Enric Guaus, Cyril Laurier, Owen Meyers, Ricard Marxer, Dmitry Bogdanov, Joan Serrà, Perfecto Herrera  (true, simca)]<br />
 +
'''MTG5''' = [https://www.music-ir.org/mirex/abstracts/2009/MTG_train.pdf Nicolas Wack, Enric Guaus, Cyril Laurier, Owen Meyers, Ricard Marxer, Dmitry Bogdanov, Joan Serrà, Perfecto Herrera  (false, svm)]<br />
 +
'''MTG6''' = [https://www.music-ir.org/mirex/abstracts/2009/MTG_train.pdf Nicolas Wack, Enric Guaus, Cyril Laurier, Owen Meyers, Ricard Marxer, Dmitry Bogdanov, Joan Serrà, Perfecto Herrera  (true, svm)]<br />
 +
'''XLZZG''' = [https://www.music-ir.org/mirex/abstracts/2009/XLZZG.pdf Jieping Xu, Yi Liu, Tao Zheng, Chao Zhen, Yue Gao (RUC_1)]<br />
 +
'''XZZ''' = [https://www.music-ir.org/mirex/abstracts/2009/XZZ.pdf JiePing Xu, Chao Zhen, Tao Zheng (RUC_2)]<br />
  
<csv p=3>audiomood/audiomood_Accuracy_Per_Class.csv</csv>
+
==Overall Summary Results==
 +
===Raw Classification Accuracy Averaged Over Three Train/Test Folds===
  
===MIREX 2008 Audio Artist Classification Evaluation Logs and Confusion Matrices===
+
<csv p=3>2009/audiomood/summary_audiomood.csv</csv>
  
====MIREX 2008 Audio Mood Classification Run Times====
+
===Accuracy Across Folds===
  
<csv>mood.runtime.csv</csv>
+
<csv p=3>2009/audiomood/audiomood_Accuracy.csv</csv>
  
====CSV Files Without Rounding====
+
===Accuracy Across Categories===
[https://www.music-ir.org/mirex/2008/results/mood/audiomood_results_fold.csv audiomood_results_fold.csv]<br />
 
[https://www.music-ir.org/mirex/2008/results/mood/audiomood_results_class.csv audiomood_results_class.csv]<br />
 
  
====Results By Algorithm====
+
<csv p=3>2009/audiomood/audiomood_Accuracy_Per_Class.csv</csv>
(.tar.gz) <br />
 
'''GP1''' = [https://www.music-ir.org/mirex/2008/results/mood/GP1.tar.gz G. Peeters]<br />
 
'''GT1''' = [https://www.music-ir.org/mirex/2008/results/mood/GT1.tar.gz G. Tzanetakis]<br />
 
'''GT2''' = [https://www.music-ir.org/mirex/2008/results/mood/GT2.tar.gz G. Tzanetakis]<br />
 
'''GT3''' = [https://www.music-ir.org/mirex/2008/results/mood/GT3.tar.gz G. Tzanetakis]<br />
 
'''HW''' = [https://www.music-ir.org/mirex/2008/results/mood/HW.tar.gz G. H. Wang]<br />
 
'''KL''' = [https://www.music-ir.org/mirex/2008/results/mood/KL.tar.gz K. Lee]<br />
 
'''LRPPI1''' = [https://www.music-ir.org/mirex/2008/results/mood/LRPPI1.tar.gz T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 1]<br />
 
'''LRPPI2''' = [https://www.music-ir.org/mirex/2008/results/mood/LRPPI2.tar.gz T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 2]<br />
 
'''LRPPI3''' = [https://www.music-ir.org/mirex/2008/results/mood/LRPPI3.tar.gz T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 3]<br />
 
'''LRPPI4''' = [https://www.music-ir.org/mirex/2008/results/mood/LRPPI4.tar.gz T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 4]<br />
 
'''ME1''' = [https://www.music-ir.org/mirex/2008/results/mood/ME1.tar.gz I. M. Mandel, D. P. W. Ellis 1]<br />
 
'''ME2''' = [https://www.music-ir.org/mirex/2008/results/mood/ME2.tar.gz I. M. Mandel, D. P. W. Ellis 2]<br />
 
'''ME3''' = [https://www.music-ir.org/mirex/2008/results/mood/ME3.tar.gz I. M. Mandel, D. P. W. Ellis 3]<br />
 
  
 
==Friedman's Tests for Significant Differences==
 
==Friedman's Tests for Significant Differences==
 
===Classes vs. System Tukey-Kramer HSD Multi-Comparisons ===
 
===Classes vs. System Tukey-Kramer HSD Multi-Comparisons ===
The Friedman test was run in MATLAB against the average accuracy for each class. The Tukey-Kramer HSD multi-comparison data below was generated using the following MATLAB instruction. Command: [c, m, h, gnames] = multicompare(stats, 'ctype', 'tukey-kramer', 'estimate', 'friedman', 'alpha', 0.05);
+
The Friedman test was run in MATLAB against the average accuracy for each class. The Tukey-Kramer HSD multi-comparison data below was generated using the following MATLAB instruction. Command: <br />
 
+
[c, m, h, gnames] = multicompare(stats, 'ctype', 'tukey-kramer', 'estimate', 'friedman', 'alpha', 0.05);
<csv p=3>audiomood/audiomood_Accuracy.friedman.tukeyKramerHSD.csv</csv>
 
  
https://music-ir.org/mirex/2009/results/audiomood/small.audiomood_Accuracy.friedman.tukeyKramerHSD.png
+
<csv p=3>2009/audiomood/audiomood_Accuracy_Per_Class.friedman.tukeyKramerHSD.csv</csv>
  
 +
https://music-ir.org/mirex/results/2009/audiomood/small.audiomood_Accuracy_Per_Class.friedman.tukeyKramerHSD.png
  
 
===Folds vs. Systems Tukey-Kramer HSD Multi-Comparison===
 
===Folds vs. Systems Tukey-Kramer HSD Multi-Comparison===
The Friedman test was run in MATLAB against the accuracy for each fold. The Tukey-Kramer HSD multi-comparison data below was generated using the following MATLAB instruction. Command: [c, m, h, gnames] = multicompare(stats, 'ctype', 'tukey-kramer', 'estimate', 'friedman', 'alpha', 0.05);
+
The Friedman test was run in MATLAB against the accuracy for each fold. The Tukey-Kramer HSD multi-comparison data below was generated using the following MATLAB instruction. Command: <br /> [c, m, h, gnames] = multicompare(stats, 'ctype', 'tukey-kramer', 'estimate', 'friedman', 'alpha', 0.05);
  
<csv p=3>audiomood/audiomood_Accuracy_Per_Class.friedman.tukeyKramerHSD.csv
+
<csv p=3>2009/audiomood/audiomood_Accuracy.friedman.tukeyKramerHSD.csv
 
</csv>
 
</csv>
  
https://music-ir.org/mirex/2009/results/audiomood/small.audiomood_Accuracy_Per_Class.friedman.tukeyKramerHSD.png
+
https://music-ir.org/mirex/results/2009/audiomood/small.audiomood_Accuracy.friedman.tukeyKramerHSD.png
 +
 
 +
==Results By Algorithm==
 +
(.tgz) <br />
 +
 
 +
'''ANO'''= [https://music-ir.org/mirex/results/2009/audiomood/ANO.tgz  Anonymous]<br />
 +
'''BP1'''= [https://music-ir.org/mirex/results/2009/audiomood/BP1.tgz Juan José Burred, Geoffroy Peeters (file)]<br />
 +
'''BP2''' = [https://music-ir.org/mirex/results/2009/audiomood/BP2.tgz Juan José Burred, Geoffroy Peeters (tw)]<br />
 +
'''CL1''' = [https://music-ir.org/mirex/results/2009/audiomood/CL1.tgz Chuan Cao, Ming Li]<br />
 +
'''CL2''' = [https://music-ir.org/mirex/results/2009/audiomood/CL1.tgz Chuan Cao, Ming Li]<br />
 +
'''FCY1''' = [https://music-ir.org/mirex/results/2009/audiomood/FCY1.tgz Tao Feng, XiaoOu Chen, DeShun Yang]<br />
 +
'''FCY2''' = [https://music-ir.org/mirex/results/2009/audiomood/FCY2.tgz Tao Feng, XiaoOu Chen, DeShun Yang]<br />
 +
'''GP'''  = [https://music-ir.org/mirex/results/2009/audiomood/GP.tgz Geoffroy Peeters]<br />
 +
'''GT1''' = [https://music-ir.org/mirex/results/2009/audiomood/GT1.tgz George Tzanetakis (mono)]<br />
 +
'''GT2''' = [https://music-ir.org/mirex/results/2009/audiomood/GT2.tgz George Tzanetakis (stereo)]<br />
 +
'''GLR1''' = [https://music-ir.org/mirex/results/2009/audiomood/GLR1.tgz A. Grecu, T. Lidy, A. Rauber (full)]<br />
 +
'''GLR2''' = [https://music-ir.org/mirex/results/2009/audiomood/GLR2.tgz  A. Grecu, T. Lidy, A. Rauber (template)]<br />
 +
'''HNOS1''' = [https://music-ir.org/mirex/results/2009/audiomood/HNOS1.tgz Takashi Hasegawa, Takuya Nishimoto, Nobutaka Ono, Shigeki Sagayama (tcca)]<br />
 +
'''HNOS2''' = [https://music-ir.org/mirex/results/2009/audiomood/HNOS2.tgz Takashi Hasegawa, Takuya Nishimoto, Nobutaka Ono, Shigeki Sagayama (tcck)]<br />
 +
'''HNOS3''' = [https://music-ir.org/mirex/results/2009/audiomood/HNOS3.tgz Takashi Hasegawa, Takuya Nishimoto, Nobutaka Ono, Shigeki Sagayama (tccl)]<br />
 +
'''HNOS4''' = [https://music-ir.org/mirex/results/2009/audiomood/HNOS4.tgz Takashi Hasegawa, Takuya Nishimoto, Nobutaka Ono, Shigeki Sagayama (tcpk)]<br />
 +
'''HW1'''  = [https://music-ir.org/mirex/results/2009/audiomood/HW1.tgz Huaxin Wang]<br />
 +
'''HW2'''  = [https://music-ir.org/mirex/results/2009/audiomood/HW2.tgz Huaxin Wang]<br />
 +
'''VA1''' = [https://music-ir.org/mirex/results/2009/audiomood/VA1.tgz T. Lidy, A. Grecu, A. Rauber, A. Pertusa, P. J. Ponce de León, J. M. Iñesta (WMV)]<br />
 +
'''VA2''' = [https://music-ir.org/mirex/results/2009/audiomood/VA2.tgz T. Lidy, A. Grecu, A. Rauber, A. Pertusa, P. J. Ponce de León, J. M. Iñesta (BWWV)]<br />
 +
'''LZG''' = [https://music-ir.org/mirex/results/2009/audiomood/LZG.tgz Yi Liu, Tao Zheng, Yue Gao (RUC_1)]<br />
 +
'''RK1''' = [https://music-ir.org/mirex/results/2009/audiomood/RK1.tgz Preeti Rao, Sujeet Kini]<br />
 +
'''RK2''' = [https://music-ir.org/mirex/results/2009/audiomood/RK2.tgz Preeti Rao, Sujeet Kini]<br />
 +
'''SS''' = [https://music-ir.org/mirex/results/2009/audiomood/SS.tgz Klaus Seyerlehner, Markus Schedl]<br />
 +
'''TAOS'''= [https://music-ir.org/mirex/results/2009/audiomood/TAOS.tgz Emiru Tsunoo, Taichi Akase, Nobutaka Ono, Shigeki Sagayama]<br />
 +
'''MTG1''' = [https://music-ir.org/mirex/results/2009/audiomood/MTG1.tgz N. Wack, E. Guaus, C. Laurier, O. Meyers, R. Marxer, D. Bogdanov, J. Serrà, P. Herrera (false, rca)]<br />
 +
'''MTG2''' = [https://music-ir.org/mirex/results/2009/audiomood/MTG2.tgz N. Wack, E. Guaus, C. Laurier, O. Meyers, R. Marxer, D. Bogdanov, J. Serrà, P. Herrera (true, rca)]<br />
 +
'''MTG3''' = [https://music-ir.org/mirex/results/2009/audiomood/MTG3.tgz N. Wack, E. Guaus, C. Laurier, O. Meyers, R. Marxer, D. Bogdanov, J. Serrà, P. Herrera (false, simca)]<br />
 +
'''MTG4''' = [https://music-ir.org/mirex/results/2009/audiomood/MTG4.tgz N. Wack, E. Guaus, C. Laurier, O. Meyers, R. Marxer, D. Bogdanov, J. Serrà, P. Herrera (true, simca)]<br />
 +
'''MTG5''' = [https://music-ir.org/mirex/results/2009/audiomood/MTG5.tgz N. Wack, E. Guaus, C. Laurier, O. Meyers, R. Marxer, D. Bogdanov, J. Serrà, P. Herrera (false, svm)]<br />
 +
'''MTG6''' = [https://music-ir.org/mirex/results/2009/audiomood/MTG6.tgz N. Wack, E. Guaus, C. Laurier, O. Meyers, R. Marxer, D. Bogdanov, J. Serrà, P. Herrera (true, svm)]<br />
 +
'''XLZZG''' = [https://music-ir.org/mirex/results/2009/audiomood/XLZZG.tgz Jieping Xu, Yi Liu, Tao Zheng, Chao Zhen, Yue Gao (RUC_1)]<br />
 +
'''XZZ''' = [https://music-ir.org/mirex/results/2009/audiomood/XZZ.tgz JiePing Xu, Chao Zhen, Tao Zheng (RUC_2)]<br />
 +
 
 +
==Run Times==
 +
 
 +
<csv>2009/mood.runtime.csv</csv> TBA

Latest revision as of 15:06, 23 July 2010

Introduction

These are the results for the 2009 running of the Audio Music Mood Classification task. For background information about this task set please refer to the 2009:Audio Music Mood Classification page. The data was created by Xiao Hu and consists of 600 files organized into 5 mood "clusters".

Mood Clusters

The 5 mood clusters were derived from the AMG mood repository.

   * Cluster_1: passionate, rousing, confident,boisterous, rowdy
   * Cluster_2: rollicking, cheerful, fun, sweet, amiable/good natured
   * Cluster_3: literate, poignant, wistful, bittersweet, autumnal, brooding
   * Cluster_4: humorous, silly, campy, quirky, whimsical, witty, wry
   * Cluster_5: aggressive, fiery,tense/anxious, intense, volatile,visceral 

For more information on the clusters, please see

Hu, Xiao and J. Stephen Downie (2007) Exploring mood metadata: Relationships with genre, artist and usage metadata, In the 8th International Conference on Music Information Retrieval (ISMIR 2007), Vienna, September 23-27, 2007.

Data

There are 600 audio clips with 120 in each mood cluster. Each clip belongs to only one mood cluster. The clips were chosen from the APM audio set .

The mood cluster labels of the clips were firstly suggested by their metadata provided by APM and then decided by human validations using the 2007:Evalutron6000_Walkthrough_For_Audio_Mood_Classification

Each mood cluster covers a variety of genres: each category covers about 7 major genres (with 20-30 tracks each) and a few minor genres, and the distribution among major genres within each category is made as even as possible.

Audio format: 30 second clips, 22.05kHz, mono, 16bit, WAV files; The data were evenly split into 3 folds.

For more information on the dataset and evaluation methods, please see

X. Hu, J. S. Downie, C. Laurier, M. Bay, A.Ehmann (2008) The 2007 MIREX Audio Mood Classification Task: Lessons Learned, In the 9th International Symposium on Music Information Retrieval (ISMIR 2008), Philadelphia, Sept. 2008



General Legend

Team ID

ANO= Anonymous
BP1= Juan José Burred, Geoffroy Peeters (file)
BP2 = Juan José Burred, Geoffroy Peeters (tw)
CL1 = Chuan Cao, Ming Li
CL2 = Chuan Cao, Ming Li
FCY1 = Tao Feng, XiaoOu Chen, DeShun Yang
FCY2 = Tao Feng, XiaoOu Chen, DeShun Yang
GP = Geoffroy Peeters
GT1 = George Tzanetakis (mono)
GT2 = George Tzanetakis (stereo)
GLR1 = Andrei Grecu, Thomas Lidy, Andreas Rauber (full)
GLR2 = Andrei Grecu, Thomas Lidy, Andreas Rauber (template)
HNOS1 = Takashi Hasegawa, Takuya Nishimoto, Nobutaka Ono, Shigeki Sagayama (tcca)
HNOS2 = Takashi Hasegawa, Takuya Nishimoto, Nobutaka Ono, Shigeki Sagayama (tcck)
HNOS3 = Takashi Hasegawa, Takuya Nishimoto, Nobutaka Ono, Shigeki Sagayama (tccl)
HNOS4 = Takashi Hasegawa, Takuya Nishimoto, Nobutaka Ono, Shigeki Sagayama (tcpk)
HW1 = Huaxin Wang
HW2 = Huaxin Wang
VA1 = Thomas Lidy, Andrei Grecu, Andreas Rauber, A. Pertusa, P. J. Ponce de León, J. M. Iñesta (WMV)
VA2 = Thomas Lidy, Andrei Grecu, Andreas Rauber, A. Pertusa, P. J. Ponce de León, J. M. Iñesta (BWWV)
LZG = Yi Liu, Tao Zheng, Yue Gao (RUC_1)
RK1 = Preeti Rao, Sujeet Kini
RK2 = Preeti Rao, Sujeet Kini
SS = Klaus Seyerlehner, Markus Schedl
TAOS= Emiru Tsunoo, Taichi Akase, Nobutaka Ono, Shigeki Sagayama
MTG1 = Nicolas Wack, Enric Guaus, Cyril Laurier, Owen Meyers, Ricard Marxer, Dmitry Bogdanov, Joan Serrà, Perfecto Herrera (false, rca)
MTG2 = Nicolas Wack, Enric Guaus, Cyril Laurier, Owen Meyers, Ricard Marxer, Dmitry Bogdanov, Joan Serrà, Perfecto Herrera (true, rca)
MTG3 = Nicolas Wack, Enric Guaus, Cyril Laurier, Owen Meyers, Ricard Marxer, Dmitry Bogdanov, Joan Serrà, Perfecto Herrera (false, simca)
MTG4 = Nicolas Wack, Enric Guaus, Cyril Laurier, Owen Meyers, Ricard Marxer, Dmitry Bogdanov, Joan Serrà, Perfecto Herrera (true, simca)
MTG5 = Nicolas Wack, Enric Guaus, Cyril Laurier, Owen Meyers, Ricard Marxer, Dmitry Bogdanov, Joan Serrà, Perfecto Herrera (false, svm)
MTG6 = Nicolas Wack, Enric Guaus, Cyril Laurier, Owen Meyers, Ricard Marxer, Dmitry Bogdanov, Joan Serrà, Perfecto Herrera (true, svm)
XLZZG = Jieping Xu, Yi Liu, Tao Zheng, Chao Zhen, Yue Gao (RUC_1)
XZZ = JiePing Xu, Chao Zhen, Tao Zheng (RUC_2)

Overall Summary Results

Raw Classification Accuracy Averaged Over Three Train/Test Folds

Participant Mean Accuracy
ANO 50.67%
BP1 58.17%
BP2 59.67%
CL1 65.67%
CL2 65.50%
FCY1 60.33%
FCY2 58.33%
GLR1 60.83%
GLR2 53.00%
GP 63.67%
GT1 59.33%
GT2 56.83%
HNOS1 58.67%
HNOS2 34.67%
HNOS3 58.67%
HNOS4 51.17%
HW1 61.33%
HW2 61.67%
LZG 61.67%
MTG1 57.67%
MTG2 57.5%
MTG3 59.83%
MTG4 59.33%
MTG5 62.83%
MTG6 59.5%
RK1 53.17%
RK2 41.33%
SS 58.83%
TAOS 56.83%
VA1 59.33%
VA2 60.17%
XLZZG 57.00%
XZZ 60.00%

download these results as csv

Accuracy Across Folds

Classification fold ANO BP1 BP2 CL1 CL2 FCY1 FCY2 GLR1 GLR2 GP GT1 GT2 HNOS1 HNOS2 HNOS3 HNOS4 HW1 HW2 LZG MTG1 MTG2 MTG3 MTG4 MTG5 MTG6 RK1 RK2 SS TAOS VA1 VA2 XLZZG XZZ
0 0.555 0.630 0.700 0.715 0.725 0.710 0.620 0.715 0.590 0.715 0.690 0.600 0.700 0.375 0.630 0.590 0.695 0.695 0.720 0.645 0.630 0.675 0.670 0.720 0.695 0.595 0.430 0.620 0.645 0.640 0.685 0.685 0.735
1 0.505 0.590 0.560 0.625 0.615 0.535 0.570 0.530 0.460 0.610 0.560 0.560 0.555 0.365 0.590 0.465 0.575 0.570 0.550 0.545 0.550 0.545 0.550 0.590 0.535 0.500 0.390 0.605 0.520 0.560 0.520 0.530 0.515
2 0.460 0.525 0.530 0.630 0.625 0.565 0.560 0.580 0.540 0.585 0.530 0.545 0.505 0.300 0.540 0.480 0.570 0.585 0.580 0.540 0.545 0.575 0.560 0.575 0.555 0.500 0.420 0.540 0.540 0.580 0.600 0.495 0.550

download these results as csv

Accuracy Across Categories

Class ANO BP1 BP2 CL1 CL2 FCY1 FCY2 GLR1 GLR2 GP GT1 GT2 HNOS1 HNOS2 HNOS3 HNOS4 HW1 HW2 LZG MTG1 MTG2 MTG3 MTG4 MTG5 MTG6 RK1 RK2 SS TAOS VA1 VA2 XLZZG XZZ
1 0.292 0.442 0.517 0.558 0.567 0.533 0.500 0.517 0.325 0.517 0.450 0.450 0.517 0.900 0.525 0.642 0.517 0.517 0.467 0.442 0.467 0.475 0.483 0.508 0.517 0.425 0.300 0.500 0.458 0.467 0.525 0.433 0.500
2 0.508 0.392 0.500 0.533 0.525 0.425 0.425 0.425 0.400 0.517 0.492 0.425 0.525 0.000 0.483 0.325 0.492 0.525 0.467 0.508 0.483 0.383 0.375 0.450 0.450 0.450 0.175 0.550 0.425 0.442 0.492 0.483 0.442
3 0.650 0.758 0.775 0.858 0.867 0.817 0.683 0.850 0.708 0.833 0.775 0.800 0.733 0.725 0.717 0.792 0.858 0.867 0.817 0.667 0.758 0.783 0.767 0.758 0.800 0.817 0.858 0.700 0.725 0.842 0.892 0.750 0.775
4 0.442 0.508 0.500 0.500 0.475 0.517 0.533 0.517 0.492 0.500 0.483 0.467 0.525 0.000 0.550 0.508 0.417 0.383 0.558 0.542 0.400 0.592 0.600 0.667 0.525 0.358 0.467 0.492 0.492 0.525 0.425 0.492 0.542
5 0.642 0.808 0.692 0.833 0.842 0.725 0.775 0.733 0.725 0.817 0.767 0.700 0.633 0.108 0.658 0.292 0.783 0.792 0.775 0.725 0.767 0.758 0.742 0.758 0.683 0.608 0.267 0.700 0.742 0.692 0.675 0.692 0.742

download these results as csv

Friedman's Tests for Significant Differences

Classes vs. System Tukey-Kramer HSD Multi-Comparisons

The Friedman test was run in MATLAB against the average accuracy for each class. The Tukey-Kramer HSD multi-comparison data below was generated using the following MATLAB instruction. Command:
[c, m, h, gnames] = multicompare(stats, 'ctype', 'tukey-kramer', 'estimate', 'friedman', 'alpha', 0.05);

TeamID TeamID Lowerbound Mean Upperbound Significance
ANO BP1 -22.070 1.100 24.270 FALSE
ANO BP2 -20.270 2.900 26.070 FALSE
ANO CL1 -15.370 7.800 30.970 FALSE
ANO CL2 -16.970 6.200 29.370 FALSE
ANO FCY1 -18.870 4.300 27.470 FALSE
ANO FCY2 -16.870 6.300 29.470 FALSE
ANO GLR1 -14.770 8.400 31.570 FALSE
ANO GLR2 -14.870 8.300 31.470 FALSE
ANO GP -14.570 8.600 31.770 FALSE
ANO GT1 -13.770 9.400 32.570 FALSE
ANO GT2 -13.270 9.900 33.070 FALSE
ANO HNOS1 -13.170 10.000 33.170 FALSE
ANO HNOS2 -13.370 9.800 32.970 FALSE
ANO HNOS3 -12.270 10.900 34.070 FALSE
ANO HNOS4 -12.270 10.900 34.070 FALSE
ANO HW1 -11.670 11.500 34.670 FALSE
ANO HW2 -11.270 11.900 35.070 FALSE
ANO LZG -12.770 10.400 33.570 FALSE
ANO MTG1 -12.970 10.200 33.370 FALSE
ANO MTG2 -11.570 11.600 34.770 FALSE
ANO MTG3 -9.870 13.300 36.470 FALSE
ANO MTG4 -10.770 12.400 35.570 FALSE
ANO MTG5 -9.870 13.300 36.470 FALSE
ANO MTG6 -7.070 16.100 39.270 FALSE
ANO RK1 -7.170 16.000 39.170 FALSE
ANO RK2 -7.170 16.000 39.170 FALSE
ANO SS -4.870 18.300 41.470 FALSE
ANO TAOS -3.970 19.200 42.370 FALSE
ANO VA1 -10.370 12.800 35.970 FALSE
ANO VA2 -3.370 19.800 42.970 FALSE
ANO XLZZG -3.870 19.300 42.470 FALSE
ANO XZZ -3.770 19.400 42.570 FALSE
BP1 BP2 -21.370 1.800 24.970 FALSE
BP1 CL1 -16.470 6.700 29.870 FALSE
BP1 CL2 -18.070 5.100 28.270 FALSE
BP1 FCY1 -19.970 3.200 26.370 FALSE
BP1 FCY2 -17.970 5.200 28.370 FALSE
BP1 GLR1 -15.870 7.300 30.470 FALSE
BP1 GLR2 -15.970 7.200 30.370 FALSE
BP1 GP -15.670 7.500 30.670 FALSE
BP1 GT1 -14.870 8.300 31.470 FALSE
BP1 GT2 -14.370 8.800 31.970 FALSE
BP1 HNOS1 -14.270 8.900 32.070 FALSE
BP1 HNOS2 -14.470 8.700 31.870 FALSE
BP1 HNOS3 -13.370 9.800 32.970 FALSE
BP1 HNOS4 -13.370 9.800 32.970 FALSE
BP1 HW1 -12.770 10.400 33.570 FALSE
BP1 HW2 -12.370 10.800 33.970 FALSE
BP1 LZG -13.870 9.300 32.470 FALSE
BP1 MTG1 -14.070 9.100 32.270 FALSE
BP1 MTG2 -12.670 10.500 33.670 FALSE
BP1 MTG3 -10.970 12.200 35.370 FALSE
BP1 MTG4 -11.870 11.300 34.470 FALSE
BP1 MTG5 -10.970 12.200 35.370 FALSE
BP1 MTG6 -8.170 15.000 38.170 FALSE
BP1 RK1 -8.270 14.900 38.070 FALSE
BP1 RK2 -8.270 14.900 38.070 FALSE
BP1 SS -5.970 17.200 40.370 FALSE
BP1 TAOS -5.070 18.100 41.270 FALSE
BP1 VA1 -11.470 11.700 34.870 FALSE
BP1 VA2 -4.470 18.700 41.870 FALSE
BP1 XLZZG -4.970 18.200 41.370 FALSE
BP1 XZZ -4.870 18.300 41.470 FALSE
BP2 CL1 -18.270 4.900 28.070 FALSE
BP2 CL2 -19.870 3.300 26.470 FALSE
BP2 FCY1 -21.770 1.400 24.570 FALSE
BP2 FCY2 -19.770 3.400 26.570 FALSE
BP2 GLR1 -17.670 5.500 28.670 FALSE
BP2 GLR2 -17.770 5.400 28.570 FALSE
BP2 GP -17.470 5.700 28.870 FALSE
BP2 GT1 -16.670 6.500 29.670 FALSE
BP2 GT2 -16.170 7.000 30.170 FALSE
BP2 HNOS1 -16.070 7.100 30.270 FALSE
BP2 HNOS2 -16.270 6.900 30.070 FALSE
BP2 HNOS3 -15.170 8.000 31.170 FALSE
BP2 HNOS4 -15.170 8.000 31.170 FALSE
BP2 HW1 -14.570 8.600 31.770 FALSE
BP2 HW2 -14.170 9.000 32.170 FALSE
BP2 LZG -15.670 7.500 30.670 FALSE
BP2 MTG1 -15.870 7.300 30.470 FALSE
BP2 MTG2 -14.470 8.700 31.870 FALSE
BP2 MTG3 -12.770 10.400 33.570 FALSE
BP2 MTG4 -13.670 9.500 32.670 FALSE
BP2 MTG5 -12.770 10.400 33.570 FALSE
BP2 MTG6 -9.970 13.200 36.370 FALSE
BP2 RK1 -10.070 13.100 36.270 FALSE
BP2 RK2 -10.070 13.100 36.270 FALSE
BP2 SS -7.770 15.400 38.570 FALSE
BP2 TAOS -6.870 16.300 39.470 FALSE
BP2 VA1 -13.270 9.900 33.070 FALSE
BP2 VA2 -6.270 16.900 40.070 FALSE
BP2 XLZZG -6.770 16.400 39.570 FALSE
BP2 XZZ -6.670 16.500 39.670 FALSE
CL1 CL2 -24.770 -1.600 21.570 FALSE
CL1 FCY1 -26.670 -3.500 19.670 FALSE
CL1 FCY2 -24.670 -1.500 21.670 FALSE
CL1 GLR1 -22.570 0.600 23.770 FALSE
CL1 GLR2 -22.670 0.500 23.670 FALSE
CL1 GP -22.370 0.800 23.970 FALSE
CL1 GT1 -21.570 1.600 24.770 FALSE
CL1 GT2 -21.070 2.100 25.270 FALSE
CL1 HNOS1 -20.970 2.200 25.370 FALSE
CL1 HNOS2 -21.170 2.000 25.170 FALSE
CL1 HNOS3 -20.070 3.100 26.270 FALSE
CL1 HNOS4 -20.070 3.100 26.270 FALSE
CL1 HW1 -19.470 3.700 26.870 FALSE
CL1 HW2 -19.070 4.100 27.270 FALSE
CL1 LZG -20.570 2.600 25.770 FALSE
CL1 MTG1 -20.770 2.400 25.570 FALSE
CL1 MTG2 -19.370 3.800 26.970 FALSE
CL1 MTG3 -17.670 5.500 28.670 FALSE
CL1 MTG4 -18.570 4.600 27.770 FALSE
CL1 MTG5 -17.670 5.500 28.670 FALSE
CL1 MTG6 -14.870 8.300 31.470 FALSE
CL1 RK1 -14.970 8.200 31.370 FALSE
CL1 RK2 -14.970 8.200 31.370 FALSE
CL1 SS -12.670 10.500 33.670 FALSE
CL1 TAOS -11.770 11.400 34.570 FALSE
CL1 VA1 -18.170 5.000 28.170 FALSE
CL1 VA2 -11.170 12.000 35.170 FALSE
CL1 XLZZG -11.670 11.500 34.670 FALSE
CL1 XZZ -11.570 11.600 34.770 FALSE
CL2 FCY1 -25.070 -1.900 21.270 FALSE
CL2 FCY2 -23.070 0.100 23.270 FALSE
CL2 GLR1 -20.970 2.200 25.370 FALSE
CL2 GLR2 -21.070 2.100 25.270 FALSE
CL2 GP -20.770 2.400 25.570 FALSE
CL2 GT1 -19.970 3.200 26.370 FALSE
CL2 GT2 -19.470 3.700 26.870 FALSE
CL2 HNOS1 -19.370 3.800 26.970 FALSE
CL2 HNOS2 -19.570 3.600 26.770 FALSE
CL2 HNOS3 -18.470 4.700 27.870 FALSE
CL2 HNOS4 -18.470 4.700 27.870 FALSE
CL2 HW1 -17.870 5.300 28.470 FALSE
CL2 HW2 -17.470 5.700 28.870 FALSE
CL2 LZG -18.970 4.200 27.370 FALSE
CL2 MTG1 -19.170 4.000 27.170 FALSE
CL2 MTG2 -17.770 5.400 28.570 FALSE
CL2 MTG3 -16.070 7.100 30.270 FALSE
CL2 MTG4 -16.970 6.200 29.370 FALSE
CL2 MTG5 -16.070 7.100 30.270 FALSE
CL2 MTG6 -13.270 9.900 33.070 FALSE
CL2 RK1 -13.370 9.800 32.970 FALSE
CL2 RK2 -13.370 9.800 32.970 FALSE
CL2 SS -11.070 12.100 35.270 FALSE
CL2 TAOS -10.170 13.000 36.170 FALSE
CL2 VA1 -16.570 6.600 29.770 FALSE
CL2 VA2 -9.570 13.600 36.770 FALSE
CL2 XLZZG -10.070 13.100 36.270 FALSE
CL2 XZZ -9.970 13.200 36.370 FALSE
FCY1 FCY2 -21.170 2.000 25.170 FALSE
FCY1 GLR1 -19.070 4.100 27.270 FALSE
FCY1 GLR2 -19.170 4.000 27.170 FALSE
FCY1 GP -18.870 4.300 27.470 FALSE
FCY1 GT1 -18.070 5.100 28.270 FALSE
FCY1 GT2 -17.570 5.600 28.770 FALSE
FCY1 HNOS1 -17.470 5.700 28.870 FALSE
FCY1 HNOS2 -17.670 5.500 28.670 FALSE
FCY1 HNOS3 -16.570 6.600 29.770 FALSE
FCY1 HNOS4 -16.570 6.600 29.770 FALSE
FCY1 HW1 -15.970 7.200 30.370 FALSE
FCY1 HW2 -15.570 7.600 30.770 FALSE
FCY1 LZG -17.070 6.100 29.270 FALSE
FCY1 MTG1 -17.270 5.900 29.070 FALSE
FCY1 MTG2 -15.870 7.300 30.470 FALSE
FCY1 MTG3 -14.170 9.000 32.170 FALSE
FCY1 MTG4 -15.070 8.100 31.270 FALSE
FCY1 MTG5 -14.170 9.000 32.170 FALSE
FCY1 MTG6 -11.370 11.800 34.970 FALSE
FCY1 RK1 -11.470 11.700 34.870 FALSE
FCY1 RK2 -11.470 11.700 34.870 FALSE
FCY1 SS -9.170 14.000 37.170 FALSE
FCY1 TAOS -8.270 14.900 38.070 FALSE
FCY1 VA1 -14.670 8.500 31.670 FALSE
FCY1 VA2 -7.670 15.500 38.670 FALSE
FCY1 XLZZG -8.170 15.000 38.170 FALSE
FCY1 XZZ -8.070 15.100 38.270 FALSE
FCY2 GLR1 -21.070 2.100 25.270 FALSE
FCY2 GLR2 -21.170 2.000 25.170 FALSE
FCY2 GP -20.870 2.300 25.470 FALSE
FCY2 GT1 -20.070 3.100 26.270 FALSE
FCY2 GT2 -19.570 3.600 26.770 FALSE
FCY2 HNOS1 -19.470 3.700 26.870 FALSE
FCY2 HNOS2 -19.670 3.500 26.670 FALSE
FCY2 HNOS3 -18.570 4.600 27.770 FALSE
FCY2 HNOS4 -18.570 4.600 27.770 FALSE
FCY2 HW1 -17.970 5.200 28.370 FALSE
FCY2 HW2 -17.570 5.600 28.770 FALSE
FCY2 LZG -19.070 4.100 27.270 FALSE
FCY2 MTG1 -19.270 3.900 27.070 FALSE
FCY2 MTG2 -17.870 5.300 28.470 FALSE
FCY2 MTG3 -16.170 7.000 30.170 FALSE
FCY2 MTG4 -17.070 6.100 29.270 FALSE
FCY2 MTG5 -16.170 7.000 30.170 FALSE
FCY2 MTG6 -13.370 9.800 32.970 FALSE
FCY2 RK1 -13.470 9.700 32.870 FALSE
FCY2 RK2 -13.470 9.700 32.870 FALSE
FCY2 SS -11.170 12.000 35.170 FALSE
FCY2 TAOS -10.270 12.900 36.070 FALSE
FCY2 VA1 -16.670 6.500 29.670 FALSE
FCY2 VA2 -9.670 13.500 36.670 FALSE
FCY2 XLZZG -10.170 13.000 36.170 FALSE
FCY2 XZZ -10.070 13.100 36.270 FALSE
GLR1 GLR2 -23.270 -0.100 23.070 FALSE
GLR1 GP -22.970 0.200 23.370 FALSE
GLR1 GT1 -22.170 1.000 24.170 FALSE
GLR1 GT2 -21.670 1.500 24.670 FALSE
GLR1 HNOS1 -21.570 1.600 24.770 FALSE
GLR1 HNOS2 -21.770 1.400 24.570 FALSE
GLR1 HNOS3 -20.670 2.500 25.670 FALSE
GLR1 HNOS4 -20.670 2.500 25.670 FALSE
GLR1 HW1 -20.070 3.100 26.270 FALSE
GLR1 HW2 -19.670 3.500 26.670 FALSE
GLR1 LZG -21.170 2.000 25.170 FALSE
GLR1 MTG1 -21.370 1.800 24.970 FALSE
GLR1 MTG2 -19.970 3.200 26.370 FALSE
GLR1 MTG3 -18.270 4.900 28.070 FALSE
GLR1 MTG4 -19.170 4.000 27.170 FALSE
GLR1 MTG5 -18.270 4.900 28.070 FALSE
GLR1 MTG6 -15.470 7.700 30.870 FALSE
GLR1 RK1 -15.570 7.600 30.770 FALSE
GLR1 RK2 -15.570 7.600 30.770 FALSE
GLR1 SS -13.270 9.900 33.070 FALSE
GLR1 TAOS -12.370 10.800 33.970 FALSE
GLR1 VA1 -18.770 4.400 27.570 FALSE
GLR1 VA2 -11.770 11.400 34.570 FALSE
GLR1 XLZZG -12.270 10.900 34.070 FALSE
GLR1 XZZ -12.170 11.000 34.170 FALSE
GLR2 GP -22.870 0.300 23.470 FALSE
GLR2 GT1 -22.070 1.100 24.270 FALSE
GLR2 GT2 -21.570 1.600 24.770 FALSE
GLR2 HNOS1 -21.470 1.700 24.870 FALSE
GLR2 HNOS2 -21.670 1.500 24.670 FALSE
GLR2 HNOS3 -20.570 2.600 25.770 FALSE
GLR2 HNOS4 -20.570 2.600 25.770 FALSE
GLR2 HW1 -19.970 3.200 26.370 FALSE
GLR2 HW2 -19.570 3.600 26.770 FALSE
GLR2 LZG -21.070 2.100 25.270 FALSE
GLR2 MTG1 -21.270 1.900 25.070 FALSE
GLR2 MTG2 -19.870 3.300 26.470 FALSE
GLR2 MTG3 -18.170 5.000 28.170 FALSE
GLR2 MTG4 -19.070 4.100 27.270 FALSE
GLR2 MTG5 -18.170 5.000 28.170 FALSE
GLR2 MTG6 -15.370 7.800 30.970 FALSE
GLR2 RK1 -15.470 7.700 30.870 FALSE
GLR2 RK2 -15.470 7.700 30.870 FALSE
GLR2 SS -13.170 10.000 33.170 FALSE
GLR2 TAOS -12.270 10.900 34.070 FALSE
GLR2 VA1 -18.670 4.500 27.670 FALSE
GLR2 VA2 -11.670 11.500 34.670 FALSE
GLR2 XLZZG -12.170 11.000 34.170 FALSE
GLR2 XZZ -12.070 11.100 34.270 FALSE
GP GT1 -22.370 0.800 23.970 FALSE
GP GT2 -21.870 1.300 24.470 FALSE
GP HNOS1 -21.770 1.400 24.570 FALSE
GP HNOS2 -21.970 1.200 24.370 FALSE
GP HNOS3 -20.870 2.300 25.470 FALSE
GP HNOS4 -20.870 2.300 25.470 FALSE
GP HW1 -20.270 2.900 26.070 FALSE
GP HW2 -19.870 3.300 26.470 FALSE
GP LZG -21.370 1.800 24.970 FALSE
GP MTG1 -21.570 1.600 24.770 FALSE
GP MTG2 -20.170 3.000 26.170 FALSE
GP MTG3 -18.470 4.700 27.870 FALSE
GP MTG4 -19.370 3.800 26.970 FALSE
GP MTG5 -18.470 4.700 27.870 FALSE
GP MTG6 -15.670 7.500 30.670 FALSE
GP RK1 -15.770 7.400 30.570 FALSE
GP RK2 -15.770 7.400 30.570 FALSE
GP SS -13.470 9.700 32.870 FALSE
GP TAOS -12.570 10.600 33.770 FALSE
GP VA1 -18.970 4.200 27.370 FALSE
GP VA2 -11.970 11.200 34.370 FALSE
GP XLZZG -12.470 10.700 33.870 FALSE
GP XZZ -12.370 10.800 33.970 FALSE
GT1 GT2 -22.670 0.500 23.670 FALSE
GT1 HNOS1 -22.570 0.600 23.770 FALSE
GT1 HNOS2 -22.770 0.400 23.570 FALSE
GT1 HNOS3 -21.670 1.500 24.670 FALSE
GT1 HNOS4 -21.670 1.500 24.670 FALSE
GT1 HW1 -21.070 2.100 25.270 FALSE
GT1 HW2 -20.670 2.500 25.670 FALSE
GT1 LZG -22.170 1.000 24.170 FALSE
GT1 MTG1 -22.370 0.800 23.970 FALSE
GT1 MTG2 -20.970 2.200 25.370 FALSE
GT1 MTG3 -19.270 3.900 27.070 FALSE
GT1 MTG4 -20.170 3.000 26.170 FALSE
GT1 MTG5 -19.270 3.900 27.070 FALSE
GT1 MTG6 -16.470 6.700 29.870 FALSE
GT1 RK1 -16.570 6.600 29.770 FALSE
GT1 RK2 -16.570 6.600 29.770 FALSE
GT1 SS -14.270 8.900 32.070 FALSE
GT1 TAOS -13.370 9.800 32.970 FALSE
GT1 VA1 -19.770 3.400 26.570 FALSE
GT1 VA2 -12.770 10.400 33.570 FALSE
GT1 XLZZG -13.270 9.900 33.070 FALSE
GT1 XZZ -13.170 10.000 33.170 FALSE
GT2 HNOS1 -23.070 0.100 23.270 FALSE
GT2 HNOS2 -23.270 -0.100 23.070 FALSE
GT2 HNOS3 -22.170 1.000 24.170 FALSE
GT2 HNOS4 -22.170 1.000 24.170 FALSE
GT2 HW1 -21.570 1.600 24.770 FALSE
GT2 HW2 -21.170 2.000 25.170 FALSE
GT2 LZG -22.670 0.500 23.670 FALSE
GT2 MTG1 -22.870 0.300 23.470 FALSE
GT2 MTG2 -21.470 1.700 24.870 FALSE
GT2 MTG3 -19.770 3.400 26.570 FALSE
GT2 MTG4 -20.670 2.500 25.670 FALSE
GT2 MTG5 -19.770 3.400 26.570 FALSE
GT2 MTG6 -16.970 6.200 29.370 FALSE
GT2 RK1 -17.070 6.100 29.270 FALSE
GT2 RK2 -17.070 6.100 29.270 FALSE
GT2 SS -14.770 8.400 31.570 FALSE
GT2 TAOS -13.870 9.300 32.470 FALSE
GT2 VA1 -20.270 2.900 26.070 FALSE
GT2 VA2 -13.270 9.900 33.070 FALSE
GT2 XLZZG -13.770 9.400 32.570 FALSE
GT2 XZZ -13.670 9.500 32.670 FALSE
HNOS1 HNOS2 -23.370 -0.200 22.970 FALSE
HNOS1 HNOS3 -22.270 0.900 24.070 FALSE
HNOS1 HNOS4 -22.270 0.900 24.070 FALSE
HNOS1 HW1 -21.670 1.500 24.670 FALSE
HNOS1 HW2 -21.270 1.900 25.070 FALSE
HNOS1 LZG -22.770 0.400 23.570 FALSE
HNOS1 MTG1 -22.970 0.200 23.370 FALSE
HNOS1 MTG2 -21.570 1.600 24.770 FALSE
HNOS1 MTG3 -19.870 3.300 26.470 FALSE
HNOS1 MTG4 -20.770 2.400 25.570 FALSE
HNOS1 MTG5 -19.870 3.300 26.470 FALSE
HNOS1 MTG6 -17.070 6.100 29.270 FALSE
HNOS1 RK1 -17.170 6.000 29.170 FALSE
HNOS1 RK2 -17.170 6.000 29.170 FALSE
HNOS1 SS -14.870 8.300 31.470 FALSE
HNOS1 TAOS -13.970 9.200 32.370 FALSE
HNOS1 VA1 -20.370 2.800 25.970 FALSE
HNOS1 VA2 -13.370 9.800 32.970 FALSE
HNOS1 XLZZG -13.870 9.300 32.470 FALSE
HNOS1 XZZ -13.770 9.400 32.570 FALSE
HNOS2 HNOS3 -22.070 1.100 24.270 FALSE
HNOS2 HNOS4 -22.070 1.100 24.270 FALSE
HNOS2 HW1 -21.470 1.700 24.870 FALSE
HNOS2 HW2 -21.070 2.100 25.270 FALSE
HNOS2 LZG -22.570 0.600 23.770 FALSE
HNOS2 MTG1 -22.770 0.400 23.570 FALSE
HNOS2 MTG2 -21.370 1.800 24.970 FALSE
HNOS2 MTG3 -19.670 3.500 26.670 FALSE
HNOS2 MTG4 -20.570 2.600 25.770 FALSE
HNOS2 MTG5 -19.670 3.500 26.670 FALSE
HNOS2 MTG6 -16.870 6.300 29.470 FALSE
HNOS2 RK1 -16.970 6.200 29.370 FALSE
HNOS2 RK2 -16.970 6.200 29.370 FALSE
HNOS2 SS -14.670 8.500 31.670 FALSE
HNOS2 TAOS -13.770 9.400 32.570 FALSE
HNOS2 VA1 -20.170 3.000 26.170 FALSE
HNOS2 VA2 -13.170 10.000 33.170 FALSE
HNOS2 XLZZG -13.670 9.500 32.670 FALSE
HNOS2 XZZ -13.570 9.600 32.770 FALSE
HNOS3 HNOS4 -23.170 0.000 23.170 FALSE
HNOS3 HW1 -22.570 0.600 23.770 FALSE
HNOS3 HW2 -22.170 1.000 24.170 FALSE
HNOS3 LZG -23.670 -0.500 22.670 FALSE
HNOS3 MTG1 -23.870 -0.700 22.470 FALSE
HNOS3 MTG2 -22.470 0.700 23.870 FALSE
HNOS3 MTG3 -20.770 2.400 25.570 FALSE
HNOS3 MTG4 -21.670 1.500 24.670 FALSE
HNOS3 MTG5 -20.770 2.400 25.570 FALSE
HNOS3 MTG6 -17.970 5.200 28.370 FALSE
HNOS3 RK1 -18.070 5.100 28.270 FALSE
HNOS3 RK2 -18.070 5.100 28.270 FALSE
HNOS3 SS -15.770 7.400 30.570 FALSE
HNOS3 TAOS -14.870 8.300 31.470 FALSE
HNOS3 VA1 -21.270 1.900 25.070 FALSE
HNOS3 VA2 -14.270 8.900 32.070 FALSE
HNOS3 XLZZG -14.770 8.400 31.570 FALSE
HNOS3 XZZ -14.670 8.500 31.670 FALSE
HNOS4 HW1 -22.570 0.600 23.770 FALSE
HNOS4 HW2 -22.170 1.000 24.170 FALSE
HNOS4 LZG -23.670 -0.500 22.670 FALSE
HNOS4 MTG1 -23.870 -0.700 22.470 FALSE
HNOS4 MTG2 -22.470 0.700 23.870 FALSE
HNOS4 MTG3 -20.770 2.400 25.570 FALSE
HNOS4 MTG4 -21.670 1.500 24.670 FALSE
HNOS4 MTG5 -20.770 2.400 25.570 FALSE
HNOS4 MTG6 -17.970 5.200 28.370 FALSE
HNOS4 RK1 -18.070 5.100 28.270 FALSE
HNOS4 RK2 -18.070 5.100 28.270 FALSE
HNOS4 SS -15.770 7.400 30.570 FALSE
HNOS4 TAOS -14.870 8.300 31.470 FALSE
HNOS4 VA1 -21.270 1.900 25.070 FALSE
HNOS4 VA2 -14.270 8.900 32.070 FALSE
HNOS4 XLZZG -14.770 8.400 31.570 FALSE
HNOS4 XZZ -14.670 8.500 31.670 FALSE
HW1 HW2 -22.770 0.400 23.570 FALSE
HW1 LZG -24.270 -1.100 22.070 FALSE
HW1 MTG1 -24.470 -1.300 21.870 FALSE
HW1 MTG2 -23.070 0.100 23.270 FALSE
HW1 MTG3 -21.370 1.800 24.970 FALSE
HW1 MTG4 -22.270 0.900 24.070 FALSE
HW1 MTG5 -21.370 1.800 24.970 FALSE
HW1 MTG6 -18.570 4.600 27.770 FALSE
HW1 RK1 -18.670 4.500 27.670 FALSE
HW1 RK2 -18.670 4.500 27.670 FALSE
HW1 SS -16.370 6.800 29.970 FALSE
HW1 TAOS -15.470 7.700 30.870 FALSE
HW1 VA1 -21.870 1.300 24.470 FALSE
HW1 VA2 -14.870 8.300 31.470 FALSE
HW1 XLZZG -15.370 7.800 30.970 FALSE
HW1 XZZ -15.270 7.900 31.070 FALSE
HW2 LZG -24.670 -1.500 21.670 FALSE
HW2 MTG1 -24.870 -1.700 21.470 FALSE
HW2 MTG2 -23.470 -0.300 22.870 FALSE
HW2 MTG3 -21.770 1.400 24.570 FALSE
HW2 MTG4 -22.670 0.500 23.670 FALSE
HW2 MTG5 -21.770 1.400 24.570 FALSE
HW2 MTG6 -18.970 4.200 27.370 FALSE
HW2 RK1 -19.070 4.100 27.270 FALSE
HW2 RK2 -19.070 4.100 27.270 FALSE
HW2 SS -16.770 6.400 29.570 FALSE
HW2 TAOS -15.870 7.300 30.470 FALSE
HW2 VA1 -22.270 0.900 24.070 FALSE
HW2 VA2 -15.270 7.900 31.070 FALSE
HW2 XLZZG -15.770 7.400 30.570 FALSE
HW2 XZZ -15.670 7.500 30.670 FALSE
LZG MTG1 -23.370 -0.200 22.970 FALSE
LZG MTG2 -21.970 1.200 24.370 FALSE
LZG MTG3 -20.270 2.900 26.070 FALSE
LZG MTG4 -21.170 2.000 25.170 FALSE
LZG MTG5 -20.270 2.900 26.070 FALSE
LZG MTG6 -17.470 5.700 28.870 FALSE
LZG RK1 -17.570 5.600 28.770 FALSE
LZG RK2 -17.570 5.600 28.770 FALSE
LZG SS -15.270 7.900 31.070 FALSE
LZG TAOS -14.370 8.800 31.970 FALSE
LZG VA1 -20.770 2.400 25.570 FALSE
LZG VA2 -13.770 9.400 32.570 FALSE
LZG XLZZG -14.270 8.900 32.070 FALSE
LZG XZZ -14.170 9.000 32.170 FALSE
MTG1 MTG2 -21.770 1.400 24.570 FALSE
MTG1 MTG3 -20.070 3.100 26.270 FALSE
MTG1 MTG4 -20.970 2.200 25.370 FALSE
MTG1 MTG5 -20.070 3.100 26.270 FALSE
MTG1 MTG6 -17.270 5.900 29.070 FALSE
MTG1 RK1 -17.370 5.800 28.970 FALSE
MTG1 RK2 -17.370 5.800 28.970 FALSE
MTG1 SS -15.070 8.100 31.270 FALSE
MTG1 TAOS -14.170 9.000 32.170 FALSE
MTG1 VA1 -20.570 2.600 25.770 FALSE
MTG1 VA2 -13.570 9.600 32.770 FALSE
MTG1 XLZZG -14.070 9.100 32.270 FALSE
MTG1 XZZ -13.970 9.200 32.370 FALSE
MTG2 MTG3 -21.470 1.700 24.870 FALSE
MTG2 MTG4 -22.370 0.800 23.970 FALSE
MTG2 MTG5 -21.470 1.700 24.870 FALSE
MTG2 MTG6 -18.670 4.500 27.670 FALSE
MTG2 RK1 -18.770 4.400 27.570 FALSE
MTG2 RK2 -18.770 4.400 27.570 FALSE
MTG2 SS -16.470 6.700 29.870 FALSE
MTG2 TAOS -15.570 7.600 30.770 FALSE
MTG2 VA1 -21.970 1.200 24.370 FALSE
MTG2 VA2 -14.970 8.200 31.370 FALSE
MTG2 XLZZG -15.470 7.700 30.870 FALSE
MTG2 XZZ -15.370 7.800 30.970 FALSE
MTG3 MTG4 -24.070 -0.900 22.270 FALSE
MTG3 MTG5 -23.170 0.000 23.170 FALSE
MTG3 MTG6 -20.370 2.800 25.970 FALSE
MTG3 RK1 -20.470 2.700 25.870 FALSE
MTG3 RK2 -20.470 2.700 25.870 FALSE
MTG3 SS -18.170 5.000 28.170 FALSE
MTG3 TAOS -17.270 5.900 29.070 FALSE
MTG3 VA1 -23.670 -0.500 22.670 FALSE
MTG3 VA2 -16.670 6.500 29.670 FALSE
MTG3 XLZZG -17.170 6.000 29.170 FALSE
MTG3 XZZ -17.070 6.100 29.270 FALSE
MTG4 MTG5 -22.270 0.900 24.070 FALSE
MTG4 MTG6 -19.470 3.700 26.870 FALSE
MTG4 RK1 -19.570 3.600 26.770 FALSE
MTG4 RK2 -19.570 3.600 26.770 FALSE
MTG4 SS -17.270 5.900 29.070 FALSE
MTG4 TAOS -16.370 6.800 29.970 FALSE
MTG4 VA1 -22.770 0.400 23.570 FALSE
MTG4 VA2 -15.770 7.400 30.570 FALSE
MTG4 XLZZG -16.270 6.900 30.070 FALSE
MTG4 XZZ -16.170 7.000 30.170 FALSE
MTG5 MTG6 -20.370 2.800 25.970 FALSE
MTG5 RK1 -20.470 2.700 25.870 FALSE
MTG5 RK2 -20.470 2.700 25.870 FALSE
MTG5 SS -18.170 5.000 28.170 FALSE
MTG5 TAOS -17.270 5.900 29.070 FALSE
MTG5 VA1 -23.670 -0.500 22.670 FALSE
MTG5 VA2 -16.670 6.500 29.670 FALSE
MTG5 XLZZG -17.170 6.000 29.170 FALSE
MTG5 XZZ -17.070 6.100 29.270 FALSE
MTG6 RK1 -23.270 -0.100 23.070 FALSE
MTG6 RK2 -23.270 -0.100 23.070 FALSE
MTG6 SS -20.970 2.200 25.370 FALSE
MTG6 TAOS -20.070 3.100 26.270 FALSE
MTG6 VA1 -26.470 -3.300 19.870 FALSE
MTG6 VA2 -19.470 3.700 26.870 FALSE
MTG6 XLZZG -19.970 3.200 26.370 FALSE
MTG6 XZZ -19.870 3.300 26.470 FALSE
RK1 RK2 -23.170 0.000 23.170 FALSE
RK1 SS -20.870 2.300 25.470 FALSE
RK1 TAOS -19.970 3.200 26.370 FALSE
RK1 VA1 -26.370 -3.200 19.970 FALSE
RK1 VA2 -19.370 3.800 26.970 FALSE
RK1 XLZZG -19.870 3.300 26.470 FALSE
RK1 XZZ -19.770 3.400 26.570 FALSE
RK2 SS -20.870 2.300 25.470 FALSE
RK2 TAOS -19.970 3.200 26.370 FALSE
RK2 VA1 -26.370 -3.200 19.970 FALSE
RK2 VA2 -19.370 3.800 26.970 FALSE
RK2 XLZZG -19.870 3.300 26.470 FALSE
RK2 XZZ -19.770 3.400 26.570 FALSE
SS TAOS -22.270 0.900 24.070 FALSE
SS VA1 -28.670 -5.500 17.670 FALSE
SS VA2 -21.670 1.500 24.670 FALSE
SS XLZZG -22.170 1.000 24.170 FALSE
SS XZZ -22.070 1.100 24.270 FALSE
TAOS VA1 -29.570 -6.400 16.770 FALSE
TAOS VA2 -22.570 0.600 23.770 FALSE
TAOS XLZZG -23.070 0.100 23.270 FALSE
TAOS XZZ -22.970 0.200 23.370 FALSE
VA1 VA2 -16.170 7.000 30.170 FALSE
VA1 XLZZG -16.670 6.500 29.670 FALSE
VA1 XZZ -16.570 6.600 29.770 FALSE
VA2 XLZZG -23.670 -0.500 22.670 FALSE
VA2 XZZ -23.570 -0.400 22.770 FALSE
XLZZG XZZ -23.070 0.100 23.270 FALSE

download these results as csv

https://music-ir.org/mirex/results/2009/audiomood/small.audiomood_Accuracy_Per_Class.friedman.tukeyKramerHSD.png

Folds vs. Systems Tukey-Kramer HSD Multi-Comparison

The Friedman test was run in MATLAB against the accuracy for each fold. The Tukey-Kramer HSD multi-comparison data below was generated using the following MATLAB instruction. Command:
[c, m, h, gnames] = multicompare(stats, 'ctype', 'tukey-kramer', 'estimate', 'friedman', 'alpha', 0.05);

TeamID TeamID Lowerbound Mean Upperbound Significance
ANO BP1 -30.572 -0.667 29.238 FALSE
ANO BP2 -28.072 1.833 31.738 FALSE
ANO CL1 -26.238 3.667 33.572 FALSE
ANO CL2 -23.405 6.500 36.405 FALSE
ANO FCY1 -23.905 6.000 35.905 FALSE
ANO FCY2 -22.238 7.667 37.572 FALSE
ANO GLR1 -20.405 9.500 39.405 FALSE
ANO GLR2 -18.738 11.167 41.072 FALSE
ANO GP -17.905 12.000 41.905 FALSE
ANO GT1 -17.905 12.000 41.905 FALSE
ANO GT2 -17.238 12.667 42.572 FALSE
ANO HNOS1 -17.072 12.833 42.738 FALSE
ANO HNOS2 -16.405 13.500 43.405 FALSE
ANO HNOS3 -19.072 10.833 40.738 FALSE
ANO HNOS4 -16.405 13.500 43.405 FALSE
ANO HW1 -15.572 14.333 44.238 FALSE
ANO HW2 -15.738 14.167 44.072 FALSE
ANO LZG -15.905 14.000 43.905 FALSE
ANO MTG1 -15.405 14.500 44.405 FALSE
ANO MTG2 -16.405 13.500 43.405 FALSE
ANO MTG3 -14.238 15.667 45.572 FALSE
ANO MTG4 -12.572 17.333 47.238 FALSE
ANO MTG5 -13.405 16.500 46.405 FALSE
ANO MTG6 -9.905 20.000 49.905 FALSE
ANO RK1 -10.572 19.333 49.238 FALSE
ANO RK2 -13.572 16.333 46.238 FALSE
ANO SS -4.238 25.667 55.572 FALSE
ANO TAOS -5.405 24.500 54.405 FALSE
ANO VA1 -2.738 27.167 57.072 FALSE
ANO VA2 -2.572 27.333 57.238 FALSE
ANO XLZZG -0.572 29.333 59.238 FALSE
ANO XZZ 0.428 30.333 60.238 TRUE
BP1 BP2 -27.405 2.500 32.405 FALSE
BP1 CL1 -25.572 4.333 34.238 FALSE
BP1 CL2 -22.738 7.167 37.072 FALSE
BP1 FCY1 -23.238 6.667 36.572 FALSE
BP1 FCY2 -21.572 8.333 38.238 FALSE
BP1 GLR1 -19.738 10.167 40.072 FALSE
BP1 GLR2 -18.072 11.833 41.738 FALSE
BP1 GP -17.238 12.667 42.572 FALSE
BP1 GT1 -17.238 12.667 42.572 FALSE
BP1 GT2 -16.572 13.333 43.238 FALSE
BP1 HNOS1 -16.405 13.500 43.405 FALSE
BP1 HNOS2 -15.738 14.167 44.072 FALSE
BP1 HNOS3 -18.405 11.500 41.405 FALSE
BP1 HNOS4 -15.738 14.167 44.072 FALSE
BP1 HW1 -14.905 15.000 44.905 FALSE
BP1 HW2 -15.072 14.833 44.738 FALSE
BP1 LZG -15.238 14.667 44.572 FALSE
BP1 MTG1 -14.738 15.167 45.072 FALSE
BP1 MTG2 -15.738 14.167 44.072 FALSE
BP1 MTG3 -13.572 16.333 46.238 FALSE
BP1 MTG4 -11.905 18.000 47.905 FALSE
BP1 MTG5 -12.738 17.167 47.072 FALSE
BP1 MTG6 -9.238 20.667 50.572 FALSE
BP1 RK1 -9.905 20.000 49.905 FALSE
BP1 RK2 -12.905 17.000 46.905 FALSE
BP1 SS -3.572 26.333 56.238 FALSE
BP1 TAOS -4.738 25.167 55.072 FALSE
BP1 VA1 -2.072 27.833 57.738 FALSE
BP1 VA2 -1.905 28.000 57.905 FALSE
BP1 XLZZG 0.095 30.000 59.905 TRUE
BP1 XZZ 1.095 31.000 60.905 TRUE
BP2 CL1 -28.072 1.833 31.738 FALSE
BP2 CL2 -25.238 4.667 34.572 FALSE
BP2 FCY1 -25.738 4.167 34.072 FALSE
BP2 FCY2 -24.072 5.833 35.738 FALSE
BP2 GLR1 -22.238 7.667 37.572 FALSE
BP2 GLR2 -20.572 9.333 39.238 FALSE
BP2 GP -19.738 10.167 40.072 FALSE
BP2 GT1 -19.738 10.167 40.072 FALSE
BP2 GT2 -19.072 10.833 40.738 FALSE
BP2 HNOS1 -18.905 11.000 40.905 FALSE
BP2 HNOS2 -18.238 11.667 41.572 FALSE
BP2 HNOS3 -20.905 9.000 38.905 FALSE
BP2 HNOS4 -18.238 11.667 41.572 FALSE
BP2 HW1 -17.405 12.500 42.405 FALSE
BP2 HW2 -17.572 12.333 42.238 FALSE
BP2 LZG -17.738 12.167 42.072 FALSE
BP2 MTG1 -17.238 12.667 42.572 FALSE
BP2 MTG2 -18.238 11.667 41.572 FALSE
BP2 MTG3 -16.072 13.833 43.738 FALSE
BP2 MTG4 -14.405 15.500 45.405 FALSE
BP2 MTG5 -15.238 14.667 44.572 FALSE
BP2 MTG6 -11.738 18.167 48.072 FALSE
BP2 RK1 -12.405 17.500 47.405 FALSE
BP2 RK2 -15.405 14.500 44.405 FALSE
BP2 SS -6.072 23.833 53.738 FALSE
BP2 TAOS -7.238 22.667 52.572 FALSE
BP2 VA1 -4.572 25.333 55.238 FALSE
BP2 VA2 -4.405 25.500 55.405 FALSE
BP2 XLZZG -2.405 27.500 57.405 FALSE
BP2 XZZ -1.405 28.500 58.405 FALSE
CL1 CL2 -27.072 2.833 32.738 FALSE
CL1 FCY1 -27.572 2.333 32.238 FALSE
CL1 FCY2 -25.905 4.000 33.905 FALSE
CL1 GLR1 -24.072 5.833 35.738 FALSE
CL1 GLR2 -22.405 7.500 37.405 FALSE
CL1 GP -21.572 8.333 38.238 FALSE
CL1 GT1 -21.572 8.333 38.238 FALSE
CL1 GT2 -20.905 9.000 38.905 FALSE
CL1 HNOS1 -20.738 9.167 39.072 FALSE
CL1 HNOS2 -20.072 9.833 39.738 FALSE
CL1 HNOS3 -22.738 7.167 37.072 FALSE
CL1 HNOS4 -20.072 9.833 39.738 FALSE
CL1 HW1 -19.238 10.667 40.572 FALSE
CL1 HW2 -19.405 10.500 40.405 FALSE
CL1 LZG -19.572 10.333 40.238 FALSE
CL1 MTG1 -19.072 10.833 40.738 FALSE
CL1 MTG2 -20.072 9.833 39.738 FALSE
CL1 MTG3 -17.905 12.000 41.905 FALSE
CL1 MTG4 -16.238 13.667 43.572 FALSE
CL1 MTG5 -17.072 12.833 42.738 FALSE
CL1 MTG6 -13.572 16.333 46.238 FALSE
CL1 RK1 -14.238 15.667 45.572 FALSE
CL1 RK2 -17.238 12.667 42.572 FALSE
CL1 SS -7.905 22.000 51.905 FALSE
CL1 TAOS -9.072 20.833 50.738 FALSE
CL1 VA1 -6.405 23.500 53.405 FALSE
CL1 VA2 -6.238 23.667 53.572 FALSE
CL1 XLZZG -4.238 25.667 55.572 FALSE
CL1 XZZ -3.238 26.667 56.572 FALSE
CL2 FCY1 -30.405 -0.500 29.405 FALSE
CL2 FCY2 -28.738 1.167 31.072 FALSE
CL2 GLR1 -26.905 3.000 32.905 FALSE
CL2 GLR2 -25.238 4.667 34.572 FALSE
CL2 GP -24.405 5.500 35.405 FALSE
CL2 GT1 -24.405 5.500 35.405 FALSE
CL2 GT2 -23.738 6.167 36.072 FALSE
CL2 HNOS1 -23.572 6.333 36.238 FALSE
CL2 HNOS2 -22.905 7.000 36.905 FALSE
CL2 HNOS3 -25.572 4.333 34.238 FALSE
CL2 HNOS4 -22.905 7.000 36.905 FALSE
CL2 HW1 -22.072 7.833 37.738 FALSE
CL2 HW2 -22.238 7.667 37.572 FALSE
CL2 LZG -22.405 7.500 37.405 FALSE
CL2 MTG1 -21.905 8.000 37.905 FALSE
CL2 MTG2 -22.905 7.000 36.905 FALSE
CL2 MTG3 -20.738 9.167 39.072 FALSE
CL2 MTG4 -19.072 10.833 40.738 FALSE
CL2 MTG5 -19.905 10.000 39.905 FALSE
CL2 MTG6 -16.405 13.500 43.405 FALSE
CL2 RK1 -17.072 12.833 42.738 FALSE
CL2 RK2 -20.072 9.833 39.738 FALSE
CL2 SS -10.738 19.167 49.072 FALSE
CL2 TAOS -11.905 18.000 47.905 FALSE
CL2 VA1 -9.238 20.667 50.572 FALSE
CL2 VA2 -9.072 20.833 50.738 FALSE
CL2 XLZZG -7.072 22.833 52.738 FALSE
CL2 XZZ -6.072 23.833 53.738 FALSE
FCY1 FCY2 -28.238 1.667 31.572 FALSE
FCY1 GLR1 -26.405 3.500 33.405 FALSE
FCY1 GLR2 -24.738 5.167 35.072 FALSE
FCY1 GP -23.905 6.000 35.905 FALSE
FCY1 GT1 -23.905 6.000 35.905 FALSE
FCY1 GT2 -23.238 6.667 36.572 FALSE
FCY1 HNOS1 -23.072 6.833 36.738 FALSE
FCY1 HNOS2 -22.405 7.500 37.405 FALSE
FCY1 HNOS3 -25.072 4.833 34.738 FALSE
FCY1 HNOS4 -22.405 7.500 37.405 FALSE
FCY1 HW1 -21.572 8.333 38.238 FALSE
FCY1 HW2 -21.738 8.167 38.072 FALSE
FCY1 LZG -21.905 8.000 37.905 FALSE
FCY1 MTG1 -21.405 8.500 38.405 FALSE
FCY1 MTG2 -22.405 7.500 37.405 FALSE
FCY1 MTG3 -20.238 9.667 39.572 FALSE
FCY1 MTG4 -18.572 11.333 41.238 FALSE
FCY1 MTG5 -19.405 10.500 40.405 FALSE
FCY1 MTG6 -15.905 14.000 43.905 FALSE
FCY1 RK1 -16.572 13.333 43.238 FALSE
FCY1 RK2 -19.572 10.333 40.238 FALSE
FCY1 SS -10.238 19.667 49.572 FALSE
FCY1 TAOS -11.405 18.500 48.405 FALSE
FCY1 VA1 -8.738 21.167 51.072 FALSE
FCY1 VA2 -8.572 21.333 51.238 FALSE
FCY1 XLZZG -6.572 23.333 53.238 FALSE
FCY1 XZZ -5.572 24.333 54.238 FALSE
FCY2 GLR1 -28.072 1.833 31.738 FALSE
FCY2 GLR2 -26.405 3.500 33.405 FALSE
FCY2 GP -25.572 4.333 34.238 FALSE
FCY2 GT1 -25.572 4.333 34.238 FALSE
FCY2 GT2 -24.905 5.000 34.905 FALSE
FCY2 HNOS1 -24.738 5.167 35.072 FALSE
FCY2 HNOS2 -24.072 5.833 35.738 FALSE
FCY2 HNOS3 -26.738 3.167 33.072 FALSE
FCY2 HNOS4 -24.072 5.833 35.738 FALSE
FCY2 HW1 -23.238 6.667 36.572 FALSE
FCY2 HW2 -23.405 6.500 36.405 FALSE
FCY2 LZG -23.572 6.333 36.238 FALSE
FCY2 MTG1 -23.072 6.833 36.738 FALSE
FCY2 MTG2 -24.072 5.833 35.738 FALSE
FCY2 MTG3 -21.905 8.000 37.905 FALSE
FCY2 MTG4 -20.238 9.667 39.572 FALSE
FCY2 MTG5 -21.072 8.833 38.738 FALSE
FCY2 MTG6 -17.572 12.333 42.238 FALSE
FCY2 RK1 -18.238 11.667 41.572 FALSE
FCY2 RK2 -21.238 8.667 38.572 FALSE
FCY2 SS -11.905 18.000 47.905 FALSE
FCY2 TAOS -13.072 16.833 46.738 FALSE
FCY2 VA1 -10.405 19.500 49.405 FALSE
FCY2 VA2 -10.238 19.667 49.572 FALSE
FCY2 XLZZG -8.238 21.667 51.572 FALSE
FCY2 XZZ -7.238 22.667 52.572 FALSE
GLR1 GLR2 -28.238 1.667 31.572 FALSE
GLR1 GP -27.405 2.500 32.405 FALSE
GLR1 GT1 -27.405 2.500 32.405 FALSE
GLR1 GT2 -26.738 3.167 33.072 FALSE
GLR1 HNOS1 -26.572 3.333 33.238 FALSE
GLR1 HNOS2 -25.905 4.000 33.905 FALSE
GLR1 HNOS3 -28.572 1.333 31.238 FALSE
GLR1 HNOS4 -25.905 4.000 33.905 FALSE
GLR1 HW1 -25.072 4.833 34.738 FALSE
GLR1 HW2 -25.238 4.667 34.572 FALSE
GLR1 LZG -25.405 4.500 34.405 FALSE
GLR1 MTG1 -24.905 5.000 34.905 FALSE
GLR1 MTG2 -25.905 4.000 33.905 FALSE
GLR1 MTG3 -23.738 6.167 36.072 FALSE
GLR1 MTG4 -22.072 7.833 37.738 FALSE
GLR1 MTG5 -22.905 7.000 36.905 FALSE
GLR1 MTG6 -19.405 10.500 40.405 FALSE
GLR1 RK1 -20.072 9.833 39.738 FALSE
GLR1 RK2 -23.072 6.833 36.738 FALSE
GLR1 SS -13.738 16.167 46.072 FALSE
GLR1 TAOS -14.905 15.000 44.905 FALSE
GLR1 VA1 -12.238 17.667 47.572 FALSE
GLR1 VA2 -12.072 17.833 47.738 FALSE
GLR1 XLZZG -10.072 19.833 49.738 FALSE
GLR1 XZZ -9.072 20.833 50.738 FALSE
GLR2 GP -29.072 0.833 30.738 FALSE
GLR2 GT1 -29.072 0.833 30.738 FALSE
GLR2 GT2 -28.405 1.500 31.405 FALSE
GLR2 HNOS1 -28.238 1.667 31.572 FALSE
GLR2 HNOS2 -27.572 2.333 32.238 FALSE
GLR2 HNOS3 -30.238 -0.333 29.572 FALSE
GLR2 HNOS4 -27.572 2.333 32.238 FALSE
GLR2 HW1 -26.738 3.167 33.072 FALSE
GLR2 HW2 -26.905 3.000 32.905 FALSE
GLR2 LZG -27.072 2.833 32.738 FALSE
GLR2 MTG1 -26.572 3.333 33.238 FALSE
GLR2 MTG2 -27.572 2.333 32.238 FALSE
GLR2 MTG3 -25.405 4.500 34.405 FALSE
GLR2 MTG4 -23.738 6.167 36.072 FALSE
GLR2 MTG5 -24.572 5.333 35.238 FALSE
GLR2 MTG6 -21.072 8.833 38.738 FALSE
GLR2 RK1 -21.738 8.167 38.072 FALSE
GLR2 RK2 -24.738 5.167 35.072 FALSE
GLR2 SS -15.405 14.500 44.405 FALSE
GLR2 TAOS -16.572 13.333 43.238 FALSE
GLR2 VA1 -13.905 16.000 45.905 FALSE
GLR2 VA2 -13.738 16.167 46.072 FALSE
GLR2 XLZZG -11.738 18.167 48.072 FALSE
GLR2 XZZ -10.738 19.167 49.072 FALSE
GP GT1 -29.905 0.000 29.905 FALSE
GP GT2 -29.238 0.667 30.572 FALSE
GP HNOS1 -29.072 0.833 30.738 FALSE
GP HNOS2 -28.405 1.500 31.405 FALSE
GP HNOS3 -31.072 -1.167 28.738 FALSE
GP HNOS4 -28.405 1.500 31.405 FALSE
GP HW1 -27.572 2.333 32.238 FALSE
GP HW2 -27.738 2.167 32.072 FALSE
GP LZG -27.905 2.000 31.905 FALSE
GP MTG1 -27.405 2.500 32.405 FALSE
GP MTG2 -28.405 1.500 31.405 FALSE
GP MTG3 -26.238 3.667 33.572 FALSE
GP MTG4 -24.572 5.333 35.238 FALSE
GP MTG5 -25.405 4.500 34.405 FALSE
GP MTG6 -21.905 8.000 37.905 FALSE
GP RK1 -22.572 7.333 37.238 FALSE
GP RK2 -25.572 4.333 34.238 FALSE
GP SS -16.238 13.667 43.572 FALSE
GP TAOS -17.405 12.500 42.405 FALSE
GP VA1 -14.738 15.167 45.072 FALSE
GP VA2 -14.572 15.333 45.238 FALSE
GP XLZZG -12.572 17.333 47.238 FALSE
GP XZZ -11.572 18.333 48.238 FALSE
GT1 GT2 -29.238 0.667 30.572 FALSE
GT1 HNOS1 -29.072 0.833 30.738 FALSE
GT1 HNOS2 -28.405 1.500 31.405 FALSE
GT1 HNOS3 -31.072 -1.167 28.738 FALSE
GT1 HNOS4 -28.405 1.500 31.405 FALSE
GT1 HW1 -27.572 2.333 32.238 FALSE
GT1 HW2 -27.738 2.167 32.072 FALSE
GT1 LZG -27.905 2.000 31.905 FALSE
GT1 MTG1 -27.405 2.500 32.405 FALSE
GT1 MTG2 -28.405 1.500 31.405 FALSE
GT1 MTG3 -26.238 3.667 33.572 FALSE
GT1 MTG4 -24.572 5.333 35.238 FALSE
GT1 MTG5 -25.405 4.500 34.405 FALSE
GT1 MTG6 -21.905 8.000 37.905 FALSE
GT1 RK1 -22.572 7.333 37.238 FALSE
GT1 RK2 -25.572 4.333 34.238 FALSE
GT1 SS -16.238 13.667 43.572 FALSE
GT1 TAOS -17.405 12.500 42.405 FALSE
GT1 VA1 -14.738 15.167 45.072 FALSE
GT1 VA2 -14.572 15.333 45.238 FALSE
GT1 XLZZG -12.572 17.333 47.238 FALSE
GT1 XZZ -11.572 18.333 48.238 FALSE
GT2 HNOS1 -29.738 0.167 30.072 FALSE
GT2 HNOS2 -29.072 0.833 30.738 FALSE
GT2 HNOS3 -31.738 -1.833 28.072 FALSE
GT2 HNOS4 -29.072 0.833 30.738 FALSE
GT2 HW1 -28.238 1.667 31.572 FALSE
GT2 HW2 -28.405 1.500 31.405 FALSE
GT2 LZG -28.572 1.333 31.238 FALSE
GT2 MTG1 -28.072 1.833 31.738 FALSE
GT2 MTG2 -29.072 0.833 30.738 FALSE
GT2 MTG3 -26.905 3.000 32.905 FALSE
GT2 MTG4 -25.238 4.667 34.572 FALSE
GT2 MTG5 -26.072 3.833 33.738 FALSE
GT2 MTG6 -22.572 7.333 37.238 FALSE
GT2 RK1 -23.238 6.667 36.572 FALSE
GT2 RK2 -26.238 3.667 33.572 FALSE
GT2 SS -16.905 13.000 42.905 FALSE
GT2 TAOS -18.072 11.833 41.738 FALSE
GT2 VA1 -15.405 14.500 44.405 FALSE
GT2 VA2 -15.238 14.667 44.572 FALSE
GT2 XLZZG -13.238 16.667 46.572 FALSE
GT2 XZZ -12.238 17.667 47.572 FALSE
HNOS1 HNOS2 -29.238 0.667 30.572 FALSE
HNOS1 HNOS3 -31.905 -2.000 27.905 FALSE
HNOS1 HNOS4 -29.238 0.667 30.572 FALSE
HNOS1 HW1 -28.405 1.500 31.405 FALSE
HNOS1 HW2 -28.572 1.333 31.238 FALSE
HNOS1 LZG -28.738 1.167 31.072 FALSE
HNOS1 MTG1 -28.238 1.667 31.572 FALSE
HNOS1 MTG2 -29.238 0.667 30.572 FALSE
HNOS1 MTG3 -27.072 2.833 32.738 FALSE
HNOS1 MTG4 -25.405 4.500 34.405 FALSE
HNOS1 MTG5 -26.238 3.667 33.572 FALSE
HNOS1 MTG6 -22.738 7.167 37.072 FALSE
HNOS1 RK1 -23.405 6.500 36.405 FALSE
HNOS1 RK2 -26.405 3.500 33.405 FALSE
HNOS1 SS -17.072 12.833 42.738 FALSE
HNOS1 TAOS -18.238 11.667 41.572 FALSE
HNOS1 VA1 -15.572 14.333 44.238 FALSE
HNOS1 VA2 -15.405 14.500 44.405 FALSE
HNOS1 XLZZG -13.405 16.500 46.405 FALSE
HNOS1 XZZ -12.405 17.500 47.405 FALSE
HNOS2 HNOS3 -32.572 -2.667 27.238 FALSE
HNOS2 HNOS4 -29.905 0.000 29.905 FALSE
HNOS2 HW1 -29.072 0.833 30.738 FALSE
HNOS2 HW2 -29.238 0.667 30.572 FALSE
HNOS2 LZG -29.405 0.500 30.405 FALSE
HNOS2 MTG1 -28.905 1.000 30.905 FALSE
HNOS2 MTG2 -29.905 0.000 29.905 FALSE
HNOS2 MTG3 -27.738 2.167 32.072 FALSE
HNOS2 MTG4 -26.072 3.833 33.738 FALSE
HNOS2 MTG5 -26.905 3.000 32.905 FALSE
HNOS2 MTG6 -23.405 6.500 36.405 FALSE
HNOS2 RK1 -24.072 5.833 35.738 FALSE
HNOS2 RK2 -27.072 2.833 32.738 FALSE
HNOS2 SS -17.738 12.167 42.072 FALSE
HNOS2 TAOS -18.905 11.000 40.905 FALSE
HNOS2 VA1 -16.238 13.667 43.572 FALSE
HNOS2 VA2 -16.072 13.833 43.738 FALSE
HNOS2 XLZZG -14.072 15.833 45.738 FALSE
HNOS2 XZZ -13.072 16.833 46.738 FALSE
HNOS3 HNOS4 -27.238 2.667 32.572 FALSE
HNOS3 HW1 -26.405 3.500 33.405 FALSE
HNOS3 HW2 -26.572 3.333 33.238 FALSE
HNOS3 LZG -26.738 3.167 33.072 FALSE
HNOS3 MTG1 -26.238 3.667 33.572 FALSE
HNOS3 MTG2 -27.238 2.667 32.572 FALSE
HNOS3 MTG3 -25.072 4.833 34.738 FALSE
HNOS3 MTG4 -23.405 6.500 36.405 FALSE
HNOS3 MTG5 -24.238 5.667 35.572 FALSE
HNOS3 MTG6 -20.738 9.167 39.072 FALSE
HNOS3 RK1 -21.405 8.500 38.405 FALSE
HNOS3 RK2 -24.405 5.500 35.405 FALSE
HNOS3 SS -15.072 14.833 44.738 FALSE
HNOS3 TAOS -16.238 13.667 43.572 FALSE
HNOS3 VA1 -13.572 16.333 46.238 FALSE
HNOS3 VA2 -13.405 16.500 46.405 FALSE
HNOS3 XLZZG -11.405 18.500 48.405 FALSE
HNOS3 XZZ -10.405 19.500 49.405 FALSE
HNOS4 HW1 -29.072 0.833 30.738 FALSE
HNOS4 HW2 -29.238 0.667 30.572 FALSE
HNOS4 LZG -29.405 0.500 30.405 FALSE
HNOS4 MTG1 -28.905 1.000 30.905 FALSE
HNOS4 MTG2 -29.905 0.000 29.905 FALSE
HNOS4 MTG3 -27.738 2.167 32.072 FALSE
HNOS4 MTG4 -26.072 3.833 33.738 FALSE
HNOS4 MTG5 -26.905 3.000 32.905 FALSE
HNOS4 MTG6 -23.405 6.500 36.405 FALSE
HNOS4 RK1 -24.072 5.833 35.738 FALSE
HNOS4 RK2 -27.072 2.833 32.738 FALSE
HNOS4 SS -17.738 12.167 42.072 FALSE
HNOS4 TAOS -18.905 11.000 40.905 FALSE
HNOS4 VA1 -16.238 13.667 43.572 FALSE
HNOS4 VA2 -16.072 13.833 43.738 FALSE
HNOS4 XLZZG -14.072 15.833 45.738 FALSE
HNOS4 XZZ -13.072 16.833 46.738 FALSE
HW1 HW2 -30.072 -0.167 29.738 FALSE
HW1 LZG -30.238 -0.333 29.572 FALSE
HW1 MTG1 -29.738 0.167 30.072 FALSE
HW1 MTG2 -30.738 -0.833 29.072 FALSE
HW1 MTG3 -28.572 1.333 31.238 FALSE
HW1 MTG4 -26.905 3.000 32.905 FALSE
HW1 MTG5 -27.738 2.167 32.072 FALSE
HW1 MTG6 -24.238 5.667 35.572 FALSE
HW1 RK1 -24.905 5.000 34.905 FALSE
HW1 RK2 -27.905 2.000 31.905 FALSE
HW1 SS -18.572 11.333 41.238 FALSE
HW1 TAOS -19.738 10.167 40.072 FALSE
HW1 VA1 -17.072 12.833 42.738 FALSE
HW1 VA2 -16.905 13.000 42.905 FALSE
HW1 XLZZG -14.905 15.000 44.905 FALSE
HW1 XZZ -13.905 16.000 45.905 FALSE
HW2 LZG -30.072 -0.167 29.738 FALSE
HW2 MTG1 -29.572 0.333 30.238 FALSE
HW2 MTG2 -30.572 -0.667 29.238 FALSE
HW2 MTG3 -28.405 1.500 31.405 FALSE
HW2 MTG4 -26.738 3.167 33.072 FALSE
HW2 MTG5 -27.572 2.333 32.238 FALSE
HW2 MTG6 -24.072 5.833 35.738 FALSE
HW2 RK1 -24.738 5.167 35.072 FALSE
HW2 RK2 -27.738 2.167 32.072 FALSE
HW2 SS -18.405 11.500 41.405 FALSE
HW2 TAOS -19.572 10.333 40.238 FALSE
HW2 VA1 -16.905 13.000 42.905 FALSE
HW2 VA2 -16.738 13.167 43.072 FALSE
HW2 XLZZG -14.738 15.167 45.072 FALSE
HW2 XZZ -13.738 16.167 46.072 FALSE
LZG MTG1 -29.405 0.500 30.405 FALSE
LZG MTG2 -30.405 -0.500 29.405 FALSE
LZG MTG3 -28.238 1.667 31.572 FALSE
LZG MTG4 -26.572 3.333 33.238 FALSE
LZG MTG5 -27.405 2.500 32.405 FALSE
LZG MTG6 -23.905 6.000 35.905 FALSE
LZG RK1 -24.572 5.333 35.238 FALSE
LZG RK2 -27.572 2.333 32.238 FALSE
LZG SS -18.238 11.667 41.572 FALSE
LZG TAOS -19.405 10.500 40.405 FALSE
LZG VA1 -16.738 13.167 43.072 FALSE
LZG VA2 -16.572 13.333 43.238 FALSE
LZG XLZZG -14.572 15.333 45.238 FALSE
LZG XZZ -13.572 16.333 46.238 FALSE
MTG1 MTG2 -30.905 -1.000 28.905 FALSE
MTG1 MTG3 -28.738 1.167 31.072 FALSE
MTG1 MTG4 -27.072 2.833 32.738 FALSE
MTG1 MTG5 -27.905 2.000 31.905 FALSE
MTG1 MTG6 -24.405 5.500 35.405 FALSE
MTG1 RK1 -25.072 4.833 34.738 FALSE
MTG1 RK2 -28.072 1.833 31.738 FALSE
MTG1 SS -18.738 11.167 41.072 FALSE
MTG1 TAOS -19.905 10.000 39.905 FALSE
MTG1 VA1 -17.238 12.667 42.572 FALSE
MTG1 VA2 -17.072 12.833 42.738 FALSE
MTG1 XLZZG -15.072 14.833 44.738 FALSE
MTG1 XZZ -14.072 15.833 45.738 FALSE
MTG2 MTG3 -27.738 2.167 32.072 FALSE
MTG2 MTG4 -26.072 3.833 33.738 FALSE
MTG2 MTG5 -26.905 3.000 32.905 FALSE
MTG2 MTG6 -23.405 6.500 36.405 FALSE
MTG2 RK1 -24.072 5.833 35.738 FALSE
MTG2 RK2 -27.072 2.833 32.738 FALSE
MTG2 SS -17.738 12.167 42.072 FALSE
MTG2 TAOS -18.905 11.000 40.905 FALSE
MTG2 VA1 -16.238 13.667 43.572 FALSE
MTG2 VA2 -16.072 13.833 43.738 FALSE
MTG2 XLZZG -14.072 15.833 45.738 FALSE
MTG2 XZZ -13.072 16.833 46.738 FALSE
MTG3 MTG4 -28.238 1.667 31.572 FALSE
MTG3 MTG5 -29.072 0.833 30.738 FALSE
MTG3 MTG6 -25.572 4.333 34.238 FALSE
MTG3 RK1 -26.238 3.667 33.572 FALSE
MTG3 RK2 -29.238 0.667 30.572 FALSE
MTG3 SS -19.905 10.000 39.905 FALSE
MTG3 TAOS -21.072 8.833 38.738 FALSE
MTG3 VA1 -18.405 11.500 41.405 FALSE
MTG3 VA2 -18.238 11.667 41.572 FALSE
MTG3 XLZZG -16.238 13.667 43.572 FALSE
MTG3 XZZ -15.238 14.667 44.572 FALSE
MTG4 MTG5 -30.738 -0.833 29.072 FALSE
MTG4 MTG6 -27.238 2.667 32.572 FALSE
MTG4 RK1 -27.905 2.000 31.905 FALSE
MTG4 RK2 -30.905 -1.000 28.905 FALSE
MTG4 SS -21.572 8.333 38.238 FALSE
MTG4 TAOS -22.738 7.167 37.072 FALSE
MTG4 VA1 -20.072 9.833 39.738 FALSE
MTG4 VA2 -19.905 10.000 39.905 FALSE
MTG4 XLZZG -17.905 12.000 41.905 FALSE
MTG4 XZZ -16.905 13.000 42.905 FALSE
MTG5 MTG6 -26.405 3.500 33.405 FALSE
MTG5 RK1 -27.072 2.833 32.738 FALSE
MTG5 RK2 -30.072 -0.167 29.738 FALSE
MTG5 SS -20.738 9.167 39.072 FALSE
MTG5 TAOS -21.905 8.000 37.905 FALSE
MTG5 VA1 -19.238 10.667 40.572 FALSE
MTG5 VA2 -19.072 10.833 40.738 FALSE
MTG5 XLZZG -17.072 12.833 42.738 FALSE
MTG5 XZZ -16.072 13.833 43.738 FALSE
MTG6 RK1 -30.572 -0.667 29.238 FALSE
MTG6 RK2 -33.572 -3.667 26.238 FALSE
MTG6 SS -24.238 5.667 35.572 FALSE
MTG6 TAOS -25.405 4.500 34.405 FALSE
MTG6 VA1 -22.738 7.167 37.072 FALSE
MTG6 VA2 -22.572 7.333 37.238 FALSE
MTG6 XLZZG -20.572 9.333 39.238 FALSE
MTG6 XZZ -19.572 10.333 40.238 FALSE
RK1 RK2 -32.905 -3.000 26.905 FALSE
RK1 SS -23.572 6.333 36.238 FALSE
RK1 TAOS -24.738 5.167 35.072 FALSE
RK1 VA1 -22.072 7.833 37.738 FALSE
RK1 VA2 -21.905 8.000 37.905 FALSE
RK1 XLZZG -19.905 10.000 39.905 FALSE
RK1 XZZ -18.905 11.000 40.905 FALSE
RK2 SS -20.572 9.333 39.238 FALSE
RK2 TAOS -21.738 8.167 38.072 FALSE
RK2 VA1 -19.072 10.833 40.738 FALSE
RK2 VA2 -18.905 11.000 40.905 FALSE
RK2 XLZZG -16.905 13.000 42.905 FALSE
RK2 XZZ -15.905 14.000 43.905 FALSE
SS TAOS -31.072 -1.167 28.738 FALSE
SS VA1 -28.405 1.500 31.405 FALSE
SS VA2 -28.238 1.667 31.572 FALSE
SS XLZZG -26.238 3.667 33.572 FALSE
SS XZZ -25.238 4.667 34.572 FALSE
TAOS VA1 -27.238 2.667 32.572 FALSE
TAOS VA2 -27.072 2.833 32.738 FALSE
TAOS XLZZG -25.072 4.833 34.738 FALSE
TAOS XZZ -24.072 5.833 35.738 FALSE
VA1 VA2 -29.738 0.167 30.072 FALSE
VA1 XLZZG -27.738 2.167 32.072 FALSE
VA1 XZZ -26.738 3.167 33.072 FALSE
VA2 XLZZG -27.905 2.000 31.905 FALSE
VA2 XZZ -26.905 3.000 32.905 FALSE
XLZZG XZZ -28.905 1.000 30.905 FALSE

download these results as csv

https://music-ir.org/mirex/results/2009/audiomood/small.audiomood_Accuracy.friedman.tukeyKramerHSD.png

Results By Algorithm

(.tgz)

ANO= Anonymous
BP1= Juan José Burred, Geoffroy Peeters (file)
BP2 = Juan José Burred, Geoffroy Peeters (tw)
CL1 = Chuan Cao, Ming Li
CL2 = Chuan Cao, Ming Li
FCY1 = Tao Feng, XiaoOu Chen, DeShun Yang
FCY2 = Tao Feng, XiaoOu Chen, DeShun Yang
GP = Geoffroy Peeters
GT1 = George Tzanetakis (mono)
GT2 = George Tzanetakis (stereo)
GLR1 = A. Grecu, T. Lidy, A. Rauber (full)
GLR2 = A. Grecu, T. Lidy, A. Rauber (template)
HNOS1 = Takashi Hasegawa, Takuya Nishimoto, Nobutaka Ono, Shigeki Sagayama (tcca)
HNOS2 = Takashi Hasegawa, Takuya Nishimoto, Nobutaka Ono, Shigeki Sagayama (tcck)
HNOS3 = Takashi Hasegawa, Takuya Nishimoto, Nobutaka Ono, Shigeki Sagayama (tccl)
HNOS4 = Takashi Hasegawa, Takuya Nishimoto, Nobutaka Ono, Shigeki Sagayama (tcpk)
HW1 = Huaxin Wang
HW2 = Huaxin Wang
VA1 = T. Lidy, A. Grecu, A. Rauber, A. Pertusa, P. J. Ponce de León, J. M. Iñesta (WMV)
VA2 = T. Lidy, A. Grecu, A. Rauber, A. Pertusa, P. J. Ponce de León, J. M. Iñesta (BWWV)
LZG = Yi Liu, Tao Zheng, Yue Gao (RUC_1)
RK1 = Preeti Rao, Sujeet Kini
RK2 = Preeti Rao, Sujeet Kini
SS = Klaus Seyerlehner, Markus Schedl
TAOS= Emiru Tsunoo, Taichi Akase, Nobutaka Ono, Shigeki Sagayama
MTG1 = N. Wack, E. Guaus, C. Laurier, O. Meyers, R. Marxer, D. Bogdanov, J. Serrà, P. Herrera (false, rca)
MTG2 = N. Wack, E. Guaus, C. Laurier, O. Meyers, R. Marxer, D. Bogdanov, J. Serrà, P. Herrera (true, rca)
MTG3 = N. Wack, E. Guaus, C. Laurier, O. Meyers, R. Marxer, D. Bogdanov, J. Serrà, P. Herrera (false, simca)
MTG4 = N. Wack, E. Guaus, C. Laurier, O. Meyers, R. Marxer, D. Bogdanov, J. Serrà, P. Herrera (true, simca)
MTG5 = N. Wack, E. Guaus, C. Laurier, O. Meyers, R. Marxer, D. Bogdanov, J. Serrà, P. Herrera (false, svm)
MTG6 = N. Wack, E. Guaus, C. Laurier, O. Meyers, R. Marxer, D. Bogdanov, J. Serrà, P. Herrera (true, svm)
XLZZG = Jieping Xu, Yi Liu, Tao Zheng, Chao Zhen, Yue Gao (RUC_1)
XZZ = JiePing Xu, Chao Zhen, Tao Zheng (RUC_2)

Run Times

file /nema-raid/www/mirex/results/2009/mood.runtime.csv not found TBA