Difference between revisions of "2008:Audio Genre Classification Results"

From MIREX Wiki
(Team ID)
m (Robot: Automated text replacement (-\[\[([A-Z][^:]+)\]\] +2008:\1))
Line 1: Line 1:
 
==Introduction==
 
==Introduction==
These are the results for the 2008 running of the Audio Genre Classification task. For background information about this task set please refer to the [[Audio Genre Classification]] page.  
+
These are the results for the 2008 running of the Audio Genre Classification task. For background information about this task set please refer to the [[2008:Audio Genre Classification]] page.  
  
 
===General Legend===
 
===General Legend===

Revision as of 12:23, 13 May 2010

Introduction

These are the results for the 2008 running of the Audio Genre Classification task. For background information about this task set please refer to the 2008:Audio Genre Classification page.

General Legend

Team ID

CL1 = C. Cao, M. Li 1
CL2 = C. Cao, M. Li 2
GP1 = G. Peeters
GT1 (mono) = G. Tzanetakis
GT2 (stereo) = G. Tzanetakis
GT3 (multicore) = G. Tzanetakis
LRPPI1 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 1
LRPPI2 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 2
LRPPI3 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 3
LRPPI4 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 4
ME1 = I. M. Mandel, D. P. W. Ellis 1
ME2 = I. M. Mandel, D. P. W. Ellis 2
ME3 = I. M. Mandel, D. P. W. Ellis 3

Overall Summary Results

Task 1 (MIXED) Results

MIREX 2008 Audio Genre Classification Summary Results - Raw Classification Accuracy Averaged Over Three Train/Test Folds

file /nema-raid/www/mirex/results/genremixed/audiogenre.avg.results.csv not found

Accuracy Across Folds

file /nema-raid/www/mirex/results/genremixed/audiogenre.results.fold.csv not found

Accuracy Across Categories

file /nema-raid/www/mirex/results/genremixed/audiogenre.results.class.csv not found

MIREX 2008 Audio Genre Classification Evaluation Logs and Confusion Matrices

MIREX 2008 Audio Genre Classification Run Times

file /nema-raid/www/mirex/results/genre.runtime.csv not found

CSV Files Without Rounding

audiogenre_results_fold.csv
audiogenre_results_class.csv

Results By Algorithm

(.tar.gz)
CL1 = C. Cao, M. Li 1
CL2 = C. Cao, M. Li 2
LRPPI1 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 1
LRPPI2 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 2
LRPPI3 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 3
LRPPI4 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 4
ME1 = I. M. Mandel, D. P. W. Ellis 1
ME2 = I. M. Mandel, D. P. W. Ellis 2
ME3 = I. M. Mandel, D. P. W. Ellis 3
GP = G. Peeters
GT1 = G. Tzanetakis
GT2 = G. Tzanetakis
GT3 = G. Tzanetakis

Task 2 (LATIN) Results

MIREX 2008 Audio Genre Classification Summary Results - Raw Classification Accuracy Averaged Over Three Train/Test Folds

file /nema-raid/www/mirex/results/genrelatin/audiolatin.avg.results.csv not found

Accuracy Across Folds

file /nema-raid/www/mirex/results/genrelatin/audiolatin.results.fold.csv not found

Accuracy Across Categories

file /nema-raid/www/mirex/results/genrelatin/audiolatin.results.class.csv not found

MIREX 2008 Audio Genre Classification Evaluation Logs and Confusion Matrices

MIREX 2008 Audio Genre Classification Run Times

file /nema-raid/www/mirex/results/latin.runtime.csv not found

CSV Files Without Rounding

audiolatin_results_fold.csv
audiolatin_results_class.csv

Results By Algorithm

(.tar.gz)
CL1 = C. Cao, M. Li 1
CL2 = C. Cao, M. Li 2
GP1 = G. Peeters
GT1 = G. Tzanetakis
GT2 = G. Tzanetakis
GT3 = G. Tzanetakis
LRPPI1 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 1
LRPPI2 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 2
LRPPI3 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 3
LRPPI4 = T. Lidy, A. Rauber, A. Pertusa, P. Peonce de Leon, J. M. I├▒esta 4
ME1 = I. M. Mandel, D. P. W. Ellis 1
ME2 = I. M. Mandel, D. P. W. Ellis 2
ME3 = I. M. Mandel, D. P. W. Ellis 3

Friedman's Test for Significant Differences

Task 1 (Mixed) Classes vs. Systems

The Friedman test was run in MATLAB against the average accuracy for each class.

Friedman's Anova Table

file /nema-raid/www/mirex/results/genremixed/perClassAccuracy.friedman.csv not found

Tukey-Kramer HSD Multi-Comparison

The Tukey-Kramer HSD multi-comparison data below was generated using the following MATLAB instruction. Command: [c, m, h, gnames] = multicompare(stats, 'ctype', 'tukey-kramer', 'estimate', 'friedman', 'alpha', 0.05);

file /nema-raid/www/mirex/results/genremixed/perClassAccuracy.friedman.detail.csv not found

File:Genremixed.perClassAccuracy.friedman.tukeyKramerHSD.png

Task 1 (Mixed) Folds vs. Systems

The Friedman test was run in MATLAB against the accuracy for each fold.

Friedman's Anova Table

file /nema-raid/www/mirex/results/genremixed/perFoldAccuracy.friedman.csv not found

Tukey-Kramer HSD Multi-Comparison

The Tukey-Kramer HSD multi-comparison data below was generated using the following MATLAB instruction. Command: [c, m, h, gnames] = multicompare(stats, 'ctype', 'tukey-kramer', 'estimate', 'friedman', 'alpha', 0.05);

file /nema-raid/www/mirex/results/genremixed/perFoldAccuracy.friedman.detail.csv not found

File:Genremixed.perFoldAccuracy.friedman.tukeyKramerHSD.png


Task 2 (Latin) Classes vs. Systems

The Friedman test was run in MATLAB against the average accuracy for each class.

Friedman's Anova Table

file /nema-raid/www/mirex/results/genrelatin/perClassAccuracy.friedman.csv not found

Tukey-Kramer HSD Multi-Comparison

The Tukey-Kramer HSD multi-comparison data below was generated using the following MATLAB instruction. Command: [c, m, h, gnames] = multicompare(stats, 'ctype', 'tukey-kramer', 'estimate', 'friedman', 'alpha', 0.05);

file /nema-raid/www/mirex/results/genrelatin/perClassAccuracy.friedman.detail.csv not found

File:Genrelatin.perClassAccuracy.friedman.tukeyKramerHSD.png

Task 2 (Latin) Folds vs. Systems

The Friedman test was run in MATLAB against the accuracy for each fold.

Friedman's Anova Table

file /nema-raid/www/mirex/results/genrelatin/perFoldAccuracy.friedman.csv not found

Tukey-Kramer HSD Multi-Comparison

The Tukey-Kramer HSD multi-comparison data below was generated using the following MATLAB instruction. Command: [c, m, h, gnames] = multicompare(stats, 'ctype', 'tukey-kramer', 'estimate', 'friedman', 'alpha', 0.05);

file /nema-raid/www/mirex/results/genrelatin/perFoldAccuracy.friedman.detail.csv not found

File:Genrelatin.perFoldAccuracy.friedman.tukeyKramerHSD.png