Difference between revisions of "2018:Music and or Speech Detection Results"
From MIREX Wiki
(→Segment-level Evaluation) |
(→Segment-level Evaluation) |
||
Line 320: | Line 320: | ||
| 0.8575 || 0.8305 || 0.8765 | | 0.8575 || 0.8305 || 0.8765 | ||
|- | |- | ||
− | ! LN1 | + | ! LN1(GAFMFSF) |
| 0.8636 || 0.8314 || 0.885 | | 0.8636 || 0.8314 || 0.885 | ||
+ | |- | ||
+ | ! LN1(GAFMF) | ||
+ | | || || | ||
+ | |- | ||
+ | ! LN1(GAFSF) | ||
+ | | || || | ||
|- | |- | ||
! MM1 | ! MM1 |
Revision as of 11:27, 19 September 2018
Contents
Introduction
These are the results for the 2018 running of the Music and/or Speech Detection tasks. For background information about this task set please refer to the 2018:Music and/or Speech Detection page.
General Legend
Sub code | Abstract | Contributors |
---|---|---|
DD1 | David Doukhan | |
JHKK1 | Byeong-Yong Jang, Woon-Haeng Heo, Jung-Hyun Kim, Oh-Wook Kwon | |
JHKK2 | Byeong-Yong Jang, Woon-Haeng Heo, Jung-Hyun Kim, Oh-Wook Kwon | |
JHKK3 | Byeong-Yong Jang, Woon-Haeng Heo, Jung-Hyun Kim, Oh-Wook Kwon | |
LN1 | Minsuk Choi, Jongpil Lee, Juhan Nam | |
MM1 | Matija Marolt | |
MM2 | Matija Marolt | |
MM3 | Matija Marolt | |
MMG1 | Blai Meléndez-Catalán, Emilio Molina, Emilia Gómez | |
MMG2 | Blai Meléndez-Catalán, Emilio Molina, Emilia Gómez |
Statistics notation
<class>_F = segment-level F-measure for the class <class>
<class>_F_500_on = onset-only event-level F-measure (500 ms tolerance) for the class <class>
<class>_F_500_onoff = onset-offset event-level F-measure (500 ms tolerance) for the class <class>
<class>_F_1000_on = onset-only event-level F-measure (1000 ms tolerance) for the class <class>
<class>_F_1000_onoff = onset-offset event-level F-measure (1000 ms tolerance) for the class <class>
Datasets description
Task 1: Music Detection
Dataset 1
Segment-level Evaluation
Sub code | Accuracy | Music_P | Music_R | Music_F | No-Music_P | No-Music_R | No-Music_F |
---|---|---|---|---|---|---|---|
DD1 | 0.6860 | 0.905 | 0.3873 | 0.5424 | 0.6294 | 0.9624 | 0.7611 |
JHKK1 | 0.7798 | 0.9564 | 0.5675 | 0.7123 | 0.7092 | 9761 | 0.8215 |
JHKK2 | 0.8005 | 0.9824 | 0.5955 | 0.7415 | 0.7256 | 0.9902 | 0.8375 |
LN1 | 0.6251 | 0.6915 | 0.3943 | 0.5022 | 0.5988 | 0.8385 | 0.6987 |
MM1 | 0.6135 | 0.8072 | 0.257 | 0.3899 | 0.5786 | 0.9432 | 0.7172 |
MM2 | 0.6807 | 0.857 | 0.4026 | 0.5478 | 0.6292 | 0.938 | 0.7531 |
MM3 | 0.6075 | 0.9873 | 0.1856 | 0.3124 | 0.5698 | 0.9978 | 0.7254 |
MMG1 | 0.9049 | 0.9131 | 0.8865 | 0.8996 | 0.8978 | 0.9219 | 0.9097 |
MMG3 |
Event-level Evaluation
Sub code | Music_F_500_on | Music_F_500_onoff | Music_F_1000_on | Music_F_1000_onoff |
---|---|---|---|---|
DD1 | 0.2877 | 0.093 | 0.312 | 0.1142 |
JHKK1 | 0.2303 | 0.0765 | 0.294 | 0.1173 |
JHKK2 | 0.2522 | 0.0931 | 0.3245 | 0.1389 |
LN1 | 0.1348 | 0.0139 | 0.1704 | 0.0231 |
MM1 | 0.2044 | 0.0662 | 0.2137 | 0.0831 |
MM2 | 0.2464 | 0.0817 | 0.2736 | 0.1049 |
MM3 | 0.1379 | 0.0525 | 0.1619 | 0.0676 |
MMG1 | 0.5177 | 0.2693 | 0.5813 | 0.3502 |
MMG3 |
Dataset 2
Segment-level Evaluation
Sub code | Accuracy | Music_P | Music_R | Music_F | No-Music_P | No-Music_R | No-Music_F |
---|---|---|---|---|---|---|---|
DD1 | 0.9257 | 0.9751 | 0.8950 | 0.9334 | 0.8694 | 0.9683 | 0.9162 |
JHKK1 | 0.9415 | 0.9665 | 0.9315 | 0.9487 | 0.9094 | 0.9553 | 0.9318 |
JHKK2 | 0.9153 | 0.885 | 0.9817 | 0.9309 | 0.97 | 0.8233 | 0.8907 |
LN1(GAFMFSF) | 0.7814 | 0.8319 | 0.7804 | 0.8053 | 0.7196 | 0.7828 | 0.7499 |
LN1(GAFMF) | 0.7751 | 0.8481 | 0.7456 | 0.7936 | 0.6978 | 0.8161 | 0.7523 |
LN1(GAFSF) | 0.7996 | 0.836 | 0.8137 | 0.8247 | 0.7507 | 0.78 | 0.7651 |
MM1 | 0.915 | 0.9765 | 0.8747 | 0.9228 | 0.8483 | 0.9708 | 0.9054 |
MM2 | 0.9032 | 0.9246 | 0.9072 | 0.9158 | 0.8745 | 0.8977 | 0.8859 |
MM3 | 0.8725 | 0.9794 | 0.7973 | 0.8791 | 0.7764 | 0.9769 | 0.8652 |
MMG1 | 0.9025 | 0.8586 | 0.9961 | 0.9223 | 0.9931 | 0.7726 | 0.8691 |
MMG3 | 0.949 | 0.9299 | 0.9865 | 0.9574 | 0.9795 | 0.8969 | 0.9364 |
Event-level Evaluation
Sub code | Music_F_500_on | Music_F_500_onoff | Music_F_1000_on | Music_F_1000_onoff |
---|---|---|---|---|
DD1 | 0.4089 | 0.2235 | 0.4402 | 0.248 |
JHKK1 | 0.1659 | 0.0347 | 0.2334 | 0.0636 |
JHKK2 | 0.167 | 0.029 | 0.2015 | 0.0599 |
LN1(GAFMFSF) | 0.0991 | 0.0228 | 0.1319 | 0.0428 |
LN1(GAFMF) | 0.1037 | 0.0257 | 0.139 | 0.0449 |
LN1(GAFSF) | 0.1026 | 0.0249 | 0.1385 | 0.0425 |
MM1 | 0.1412 | 0.0159 | 0.1843 | 0.0392 |
MM2 | 0.1540 | 0.0312 | 0.231 | 0.0791 |
MM3 | 0.1516 | 0.0223 | 0.1962 | 0.0535 |
MMG1 | 0.1358 | 0.0173 | 0.1936 | 0.0347 |
MMG3 | 0.1785 | 0.0298 | 0.2645 | 0.0595 |
Task 2: Speech Detection
Dataset 1
Segment-level Evaluation
Sub code | Accuracy | Speech_P | Speech_R | Speech_F | No-Speech_P | No-Speech_R | No-Speech_F |
---|---|---|---|---|---|---|---|
DD1 | 0.877 | 0.9186 | 0.7493 | ||||
JHKK3 | 0.8307 | 0.8795 | 0.7143 | ||||
LN1(GAFMFSF) | 0.6908 | 0.7472 | 0.6007 | ||||
LN1(GAFMF) | |||||||
LN1(GAFSF) | |||||||
MM1 | 0.8626 | 0.9115 | 0.6948 | ||||
MM2 | 0.8619 | 0.909 | 0.713 | ||||
MM3 | 0.8508 | 0.9086 | 0.5966 |
Event-level Evaluation
Sub code | Speech_F_500_on | Speech_F_500_onoff | Speech_F_1000_on | Speech_F_1000_onoff |
---|---|---|---|---|
DD1 | 0.415 | 0.1603 | 0.4477 | 0.2122 |
JHKK3 | 0.2882 | 0.0777 | 0.3289 | 0.0962 |
LN1 | 0.2686 | 0.0529 | 0.3484 | 0.0883 |
MM1 | 0.4607 | 0.2068 | 0.4898 | 0.2336 |
MM2 | 0.4422 | 0.1999 | 0.5093 | 0.266 |
MM3 | 0.4439 | 0.1775 | 0.4879 | 0.2122 |
Dataset 2
Segment-level Evaluation
Sub code | Accuracy | Speech_F | No-Speech_F |
---|---|---|---|
DD1 | 0.9617 | 0.9583 | 0.9648 |
JHKK3 | 0.8575 | 0.8305 | 0.8765 |
LN1(GAFMFSF) | 0.8636 | 0.8314 | 0.885 |
LN1(GAFMF) | |||
LN1(GAFSF) | |||
MM1 | 0.9367 | 0.9326 | 0.9405 |
MM2 | 0.9226 | 0.914 | 0.9296 |
MM3 | 0.8973 | 0.8973 | 0.8974 |
Event-level Evaluation
Sub code | Speech_F_500_on | Speech_F_500_onoff | Speech_F_1000_on | Speech_F_1000_onoff | |||||
---|---|---|---|---|---|---|---|---|---|
DD1 | 0.6037 | 0.4139 | 0.6318 | 0.435 | |||||
JHKK3 | 0.1585 | 0.0405 | 0.2095 | 0.0563 | |||||
LN1 | 0.1775 | 0.0399 | 0.2426 | 0.0738 | |||||
MM1 | 0.0632 | 0.0015 | 0.0947 | 0.0150 | |||||
MM2 | 0.1162 | 0.0211 | 0.1737 | - | MM3 | 0.0796 | 0.0152 | 0.123 | 0.0281 |
Task 3: Music and Speech Detection
Dataset 1
Segment-level Evaluation
Sub code | Music_F | Speech_F |
---|---|---|
LN1 | 0.4936 | 0.7718 |
MM1 | 0.3899 | 0.9115 |
MM2 | 0.5478 | 0.909 |
MM3 | 0.3124 | 0.9086 |
Event-level Evaluation
Sub code | Music_F_500_on | Music_F_500_onoff | Music_F_1000_on | Music_F_1000_onoff | Speech_F_500_on | Speech_F_500_onoff | Speech_F_1000_on | Speech_F_1000_onoff |
---|---|---|---|---|---|---|---|---|
LN1 | 0.1116 | 0.0088 | 0.1459 | 0.0186 | 0.2645 | 0.0462 | 0.348 | 0.0786 |
MM1 | 0.2044 | 0.0662 | 0.2137 | 0.0831 | 0.4607 | 0.2068 | 0.4898 | 0.2336 |
MM2 | 0.2464 | 0.0817 | 0.2736 | 0.1049 | 0.4422 | 0.1999 | 0.5093 | 0.266 |
MM3 | 0.1379 | 0.0525 | 0.1619 | 0.0676 | 0.4439 | 0.1775 | 0.4879 | 0.2122 |
Dataset 2
Segment-level Evaluation
Sub code | Music_F | Speech_F |
---|---|---|
LN1 | 0.7855 | 0.8455 |
MM1 | 0.9228 | 0.9326 |
MM2 | 0.9158 | 0.914 |
MM3 | 0.8791 | 0.8973 |
Event-level Evaluation
Sub code | Music_F_500_on | Music_F_500_onoff | Music_F_1000_on | Music_F_1000_onoff | Speech_F_500_on | Speech_F_500_onoff | Speech_F_1000_on | Speech_F_1000_onoff |
---|---|---|---|---|---|---|---|---|
LN1 | 0.087 | 0.0232 | 0.1133 | 0.0375 | 0.2233 | 0.0766 | 0.3148 | 0.1277 |
MM1 | 0.1412 | 0.0157 | 0.1843 | 0.0392 | 0.0632 | 0.0015 | 0.0947 | 0.015 |
MM2 | 0.154 | 0.0312 | 0.231 | 0.0791 | 0.1162 | 0.0211 | 0.1737 | 0.0469 |
MM3 | 0.1516 | 0.0223 | 0.1962 | 0.0535 | 0.0796 | 0.0152 | 0.123 | 0.0281 |
Task 4: Music Relative Loudness Estimation
Dataset 1
Segment-level Evaluation
Sub code | Accuracy | Fg-Music_F | Bg-Music_F | No-Music_F |
---|---|---|---|---|
MMG2 | 0.8615 | 0.788 | 0.821 | 0.9064 |
Event-level Evaluation
Sub code | Fg-Music_F_500_on | Fg-Music_F_500_onoff | Fg-Music_F_1000_on | Fg-Music_F_1000_onoff | Bg-Music_F_500_on | Bg-Music_F_500_onoff | Bg-Music_F_1000_on | Bg-Music_F_1000_onoff | Speech_F_500_on | Speech_F_500_onoff | Speech_F_1000_on | Speech_F_1000_onoff |
---|---|---|---|---|---|---|---|---|---|---|---|---|
MMG2 | 0.3298 | 0.1775 | 0.4106 | 0.2742 | 0.3853 | 0.1388 | 0.4463 | 0.2024 | 0.5254 | 0.3123 | 0.5927 | 0.3925 |