Difference between revisions of "2014:Singing Voice Separation Results"
From MIREX Wiki
(→Legend) |
(→Legend) |
||
Line 27: | Line 27: | ||
|- | |- | ||
! IIY1 | ! IIY1 | ||
− | | Singing Voice Separation and Vocal F0 Estimation based on Robust PCA and Subharmonic Summation || style="text-align: center;" | [https://www.music-ir.org/mirex/abstracts/2014/ | + | | Singing Voice Separation and Vocal F0 Estimation based on Robust PCA and Subharmonic Summation || style="text-align: center;" | [https://www.music-ir.org/mirex/abstracts/2014/IIY1.pdf PDF] || Yukara Ikemiya, Katsutoshi Itoyama, Kazuyoshi Yoshii |
|- | |- | ||
! IIY2 | ! IIY2 | ||
− | | Singing Voice Separation and Vocal F0 Estimation based on Robust PCA and Subharmonic Summation || style="text-align: center;" | [https://www.music-ir.org/mirex/abstracts/2014/ | + | | Singing Voice Separation and Vocal F0 Estimation based on Robust PCA and Subharmonic Summation || style="text-align: center;" | [https://www.music-ir.org/mirex/abstracts/2014/IIY2.pdf PDF] || Yukara Ikemiya, Katsutoshi Itoyama, Kazuyoshi Yoshii |
|- | |- | ||
! JL1 | ! JL1 |
Revision as of 03:57, 17 October 2014
Introduction
Description
These are the results for the 2014 running of the Singing Voice Separation task set. For more information about this task set please refer to the 2014:Singing Voice Separation page.
Legend
Submission code | Submission name | Abstract PDF | Contributors |
---|---|---|---|
GW1 | Bayesian Singing-Voice Separation | Guan-Xiang Wang, Po-Kai Yang, Chung-Chien Hsu, Jen-Tzung Chien | |
HKHS1 | Singing-Voice Separation using Deep Recurrent Neural Networks | Po-Sen Huang, Minje Kim, Mark Hasegawa-Johnson, Paris Smaragdis | |
HKHS2 | Singing-Voice Separation using Deep Recurrent Neural Networks | Po-Sen Huang, Minje Kim, Mark Hasegawa-Johnson, Paris Smaragdis | |
HKHS3 | Singing-Voice Separation using Deep Recurrent Neural Networks | Po-Sen Huang, Minje Kim, Mark Hasegawa-Johnson, Paris Smaragdis | |
IIY1 | Singing Voice Separation and Vocal F0 Estimation based on Robust PCA and Subharmonic Summation | Yukara Ikemiya, Katsutoshi Itoyama, Kazuyoshi Yoshii | |
IIY2 | Singing Voice Separation and Vocal F0 Estimation based on Robust PCA and Subharmonic Summation | Yukara Ikemiya, Katsutoshi Itoyama, Kazuyoshi Yoshii | |
JL1 | Singing Voice Separation Based on Sparse Nature and Spectral/Temporal Discontinuity | Il-Young Jeong, Kyogu Lee | |
LFR1 | Kernel Additive Modelling with light models | - | Antoine Liutkus, Derry Fitzgerald, Zafar Rafii |
RNA1 | Singing Voice Separation using Adaptive Window Harmonic Sinusoidal Modeling | Preeti Rao, Nagesh Nayak, Sharath Adavanne | |
RP1 | REPET-SIM for Singing Voice Separation | Zafar Rafii, Bryan Pardo | |
YC1 | MIREX 2014 Submission for Singing Voice Separation | Frederick Yen, Tai-Shih Chi |
Evaluation Criteria
GNSDR = Global Normalized Signal-to-Distortion Ratio
NSDR = Normalized Signal-to-Distortion Ratio
SIR = Signal-to-Interference Ratio
SAR = Signal-to-Artifacts Ratio
Summary
Summary Results
Algorithm | Voice GNSDR (dB) | Music GNSDR (dB) | Runtime (hh) |
---|---|---|---|
GW1 | 2.8861 | 5.2549 | 24 |
HKHS1 | -1.3988 | 0.3483 | 06 |
HKHS2 | -1.9413 | 0.5239 | 06 |
HKHS3 | -2.4807 | 0.1414 | 06 |
IIY1 | 4.2190 | 7.7893 | 02 |
IIY2 | 4.4764 | 7.8661 | 02 |
JL1 | 4.1564 | 5.6304 | 01 |
LFR1 | 0.6499 | 3.0867 | 03 |
RNA1 | 3.6915 | 7.3153 | 06 |
RP1 | 2.8602 | 5.0306 | 01 |
YC1 | -0.8202 | -3.1150 | 13 |
NSDR
For the Singing Voice (dB)
Algorithm | Mean | SD | Min | Max | Median |
---|---|---|---|---|---|
GW1 | 2.8861 | 3.4543 | -7.1344 | 12.819 | 2.5745 |
HKHS1 | -1.3988 | 3.0574 | -9.4234 | 4.292 | -1.2971 |
HKHS2 | -1.9413 | 3.2899 | -11.309 | 7.2794 | -1.4234 |
HKHS3 | -2.4807 | 3.8173 | -12.272 | 9.7879 | -1.5772 |
IIY1 | 4.219 | 3.2378 | -3.4536 | 15.517 | 4.4345 |
IIY2 | 4.4764 | 3.0584 | -2.3763 | 16.212 | 4.2927 |
JL1 | 4.1564 | 3.9819 | -3.9431 | 15.822 | 3.7558 |
LFR1 | 0.64992 | 3.7455 | -9.6199 | 7.4555 | 0.97393 |
RNA1 | 3.6915 | 3.4319 | -1.8064 | 14.38 | 3.4024 |
RP1 | 2.8602 | 2.7926 | -3.771 | 12.105 | 2.4553 |
YC1 | -0.82015 | 3.4857 | -8.7424 | 7.9435 | -0.42864 |
For the Music Accompaniment (dB)
Algorithm | Mean | SD | Min | Max | Median |
---|---|---|---|---|---|
GW1 | 5.2549 | 4.0553 | -0.792 | 16.155 | 5.0222 |
HKHS1 | 0.34825 | 2.207 | -5.7359 | 6.1051 | 0.33855 |
HKHS2 | 0.52394 | 2.5029 | -6.1304 | 6.0994 | 0.90947 |
HKHS3 | 0.14144 | 2.3196 | -6.3693 | 5.8651 | 0.55883 |
IIY1 | 7.7893 | 3.0938 | -4.0068 | 13.949 | 8.1274 |
IIY2 | 7.8661 | 3.5329 | -2.4807 | 15.082 | 8.7023 |
JL1 | 5.6304 | 4.0732 | -0.91101 | 17.648 | 5.5284 |
LFR1 | 3.0867 | 2.6421 | -6.9241 | 10.887 | 2.9156 |
RNA1 | 7.3153 | 2.9143 | -5.9455 | 13.753 | 7.5214 |
RP1 | 5.0306 | 3.004 | -0.99542 | 15.424 | 4.9872 |
YC1 | -3.115 | 3.6797 | -12.229 | 3.5503 | -2.9997 |
Boxplots
SIR
For the Singing Voice (dB)
Algorithm | Mean | SD | Min | Max | Median |
---|---|---|---|---|---|
GW1 | 6.9844 | 9.43 | -26.961 | 18.215 | 8.8768 |
HKHS1 | 6.7499 | 10.673 | -30.345 | 23.034 | 7.058 |
HKHS2 | 8.3009 | 11.705 | -32.287 | 29.393 | 7.8647 |
HKHS3 | 7.7489 | 12.137 | -30.839 | 28.544 | 8.9649 |
IIY1 | 15.472 | 11.954 | -28.445 | 32.446 | 18.307 |
IIY2 | 13.267 | 11.466 | -30.369 | 30.901 | 16.314 |
JL1 | 9.6169 | 9.6173 | -24.122 | 24.341 | 11.755 |
LFR1 | 10.454 | 10.442 | -26.952 | 23.638 | 13.042 |
RNA1 | 16.323 | 10.951 | -24.713 | 34.263 | 18.799 |
RP1 | 7.2958 | 9.7631 | -28.981 | 20.303 | 9.7841 |
YC1 | 10.873 | 10.809 | -28.646 | 27.301 | 12.837 |
For the Music Accompaniment (dB)
Algorithm | Mean | SD | Min | Max | Median |
---|---|---|---|---|---|
GW1 | 6.96 | 13.076 | -12.643 | 42.653 | 4.3054 |
HKHS1 | 1.4953 | 10.084 | -13.232 | 38.909 | -1.4525 |
HKHS2 | 2.4162 | 10.465 | -9.9978 | 34.081 | -0.51852 |
HKHS3 | 0.90212 | 9.7862 | -11.02 | 34.345 | -0.66779 |
IIY1 | 12.44 | 8.1972 | -0.61968 | 41.502 | 11.163 |
IIY2 | 14.301 | 8.3307 | 0.49447 | 41.767 | 13.809 |
JL1 | 5.6509 | 10.636 | -13.16 | 39.5 | 4.3978 |
LFR1 | 4.4493 | 10.109 | -11.445 | 41.717 | 2.0394 |
RNA1 | 12.938 | 8.5096 | -1.3967 | 40.34 | 11.979 |
RP1 | 5.5158 | 10.417 | -11.092 | 44.235 | 4.6256 |
YC1 | 0.90846 | 8.4936 | -12.296 | 32.53 | -0.63057 |
Boxplots
SAR
For the Singing Voice (dB)
Algorithm | Mean | SD | Min | Max | Median |
---|---|---|---|---|---|
GW1 | 10.398 | 6.6431 | -13.219 | 19.227 | 11.757 |
HKHS1 | 4.4392 | 5.1179 | -16.316 | 17.676 | 5.1547 |
HKHS2 | 3.6845 | 6.1018 | -23.638 | 15.233 | 4.4692 |
HKHS3 | 3.6391 | 5.615 | -14.303 | 15.068 | 3.2243 |
IIY1 | 7.7078 | 7.4547 | -25.591 | 16.613 | 9.6827 |
IIY2 | 8.5817 | 7.2202 | -24.222 | 17.066 | 10.487 |
JL1 | 10.026 | 7.5205 | -16.962 | 21.028 | 11.47 |
LFR1 | 4.729 | 5.6625 | -23.426 | 12.721 | 5.5804 |
RNA1 | 6.662 | 7.3118 | -25.659 | 15.083 | 8.9188 |
RP1 | 9.8241 | 6.5477 | -13.189 | 24.156 | 11.033 |
YC1 | 2.9058 | 5.0893 | -21.403 | 8.872 | 4.0133 |
For the Music Accompaniment (dB)
Algorithm | Mean | SD | Min | Max | Median |
---|---|---|---|---|---|
GW1 | 8.7701 | 3.3088 | -2.6918 | 16.204 | 8.6529 |
HKHS1 | 4.4585 | 4.2757 | -12.382 | 16.774 | 4.7823 |
HKHS2 | 4.2321 | 4.22 | -8.0849 | 14.269 | 4.5204 |
HKHS3 | 5.3476 | 4.6397 | -12.255 | 14.438 | 5.794 |
IIY1 | 5.4262 | 3.1853 | -2.678 | 15.981 | 5.2362 |
IIY2 | 5.0379 | 3.325 | -3.1753 | 16.62 | 5.0873 |
JL1 | 9.6038 | 3.7963 | -3.8019 | 17.577 | 10.158 |
LFR1 | 4.8871 | 3.4349 | -12.787 | 10.789 | 5.0422 |
RNA1 | 4.7221 | 3.4545 | -1.6892 | 15.052 | 4.9501 |
RP1 | 7.6957 | 3.3901 | -7.2754 | 14.854 | 7.9782 |
YC1 | -1.9525 | 2.8357 | -12.203 | 6.2045 | -2.3271 |
Boxplots
Individual Spectrograms
As the MIREX test set is private, we use three other songs with similar characteristics to demonstrate the algorithms.
Labels
a = input mixture x, b = ground truth voice for x, c = extracted voice from x,
d = input mixture y, e = ground truth voice for y, f = extracted voice from y,
g = input mixture z, h = ground truth voice for z, i = extracted voice from z
Runtime Data
Submission Code | Runtime (hh) |
---|---|
GW1 | 24 |
HKHS1 | 06 |
HKHS2 | 06 |
HKHS3 | 06 |
IIY1 | 02 |
IIY2 | 02 |
JL1 | 01 |
LFR1 | 03 |
RNA1 | 06 |
RP1 | 01 |
YC1 | 13 |