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ABSTRACT

Key detection in electronic dance music is important for
producers and DJ’s who want to mix their tracks harmon-
ically or organise their music collection by tonal content.
This extended abstract describes an algorithm for key es-
timation based on template matching, with a number of
processing stages that improve the detection accuracy in
electronic dance music over other academic algorithms.

1. INTRODUCTION

The notion of tonality is one of the most prominent con-
cepts in Western music. In its broadest sense, it defines the
systematic arrangements of pitch phenomena and the rela-
tions between them, specially in reference to a main pitch
class. The idea of key conveys a similar meaning, but nor-
mally applied to a smaller temporal scope, being common
to have several key changes along the same musical piece.
Different periods and musical styles have developed dif-
ferent practices of tonality. For example, modulation (i.e.
the process of digression from one local key to another ac-
cording to tonality dynamics) seems to be one of the main
ingredients of musical language in euroclassical 1 music,
whereas pop music tends to remain in a single key for a
whole song or perform key changes by different means.

We use the term electronic dance music (EDM) to re-
fer to a number of subgenres originating in the 1980’s and
extending into the present, intended for dancing at night-
clubs and raves, with a strong presence of percussion and a
steady beat [2]. Some of such styles even seem to break up
with notions such as chord and harmonic progression (two
basic building blocks of tonality in the previously men-
tioned repertoires) and result in an interplay between pitch
classes of a given key, but without a sense of tonal direc-
tion.

These differences in the musical function of pitch and
harmony suggest that computational key estimation should
take into account style-specific particularities and be tai-
lored to specific genres rather than aiming at all-purpose
solutions.

1 We take this term from Tagg [17] to refer to European Classical Mu-
sic of the so-called common practice repertoire, on which most treatises
on harmony are based.
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Figure 1. Basic template-based key estimation system.

1.1 Template-Based Key Estimation Methods

One of the most common approaches to key estimation is
based on pitch-class profile extraction and template match-
ing. Figure 1 shows the basic architecture of such key esti-
mation system. Regular methodologies usually convert the
audio signal to the frequency domain. The spectral repre-
sentation is then folded into a so-called pitch class profile
(PCP) or chromagram, a vector representing perceptually
equal divisions of the musical octave, providing a measure
of the intensity of each semitone of the chromatic scale
per time frame. For improved results, a variety of pre-
processing techniques such as tuning-frequency finding,
transient removal or beat tracking can be applied. It is also
common to smooth the results by weighting neighbouring
vectors. Lastly, similarity measures serve to compare the
averaged chromagram to a set of templates of tonality, and
pick the best candidate as the key estimate. We refer the
reader to [6], [14] for a detailed description of this method
and its variations.

Regarding EDM, only the work by Sha’ath [16] and
Faraldo et al. [7] address the problem specifically, although
this situation is likely to change due to the recent pub-
lication of new datasets [11]. Both Sha’ath and Faraldo
use template-matching approaches. Sha’ath makes manual
modifications to the pioneering Krumhansl-Schmuckler
key profiles [12], whereas Faraldo et al. derive statistical
profiles from a corpus of EDM.

2. ALGORITHM

Our algorithm is based on a simple template-based method
implemented in Essentia, 2 a C++ library for audio infor-
mation retrieval [1], and builds upon previous work by
Gómez [5, 6]. For a more detailed description, see [7].

2 http://essentia.upf.edu/



2.1 High-Pass Filtering and Spectral Whitening

The input audio signal is processed with a 3rd order high-
pass filter prior to the spectral analysis. 3 We decided to set
the cut-off frequency to 200 Hz after informal experimen-
tation with various frequencies in the range 100-250 Hz.
Besides, we flatten the spectrum according to its spectral
envelope, based on a method by Röbel and Rodet [19].
The aim was to increase the weight of the predominant
peaks, so that notes across the selected pitch range con-
tribute equally to the final PCP. This technique has been
previously used by Gómez [6], and other authors have pro-
posed similar solutions (e.g. [10], [13]).

2.2 New Key Profiles

As explained above, one of the main ingredients in a
template-based key estimator is the tonality model repre-
sented by the so-called key profile, a vector containing the
relative weight of the different pitch classes for a given key.
That is the reason to to submit two different algorithms to
the context.

Fkey-edm (FJH3) incorporates new key profiles based
on analysis of a balanced corpus with further manual ad-
justments. We obtained the basic major and minor profiles
by calculating the median of a subgroup of around 300
tracks per mode, that were correctly estimated with dif-
ferent key profiles (Krumhansl [12], Temperley [18] and
Faraldo et al. [7]). Then, we modified the profiles by min-
imising the weights of non-tonal degrees ([II, [III, ]IV,
[VI in major; [II, ]IV, \VI in minor).

We also obtained a third profile from a group of minor
tracks wrongly estimated as major with the newly created
profiles. We incorporated this profile into the system, so
that the template matching is performed against three dif-
ferent vectors (one major and two minor), trying to lower
the parallel errors, frequent in this kind of music. This is
explained in detail in [8].

The other algorithm (fkey, FJH2), incorporates all the
processing stages present in FJH3, but uses the major and
minor profiles proposed by Temperley in [18].

2.3 Detuning Correction

We noted that some of the estimations with the basic
method produced tritone and semitone errors. Our hypoth-
esis was that these could be due to possible de-tunings pro-
duced by record players with manual pitch/tempo correc-
tions [16]. In order to tackle this, our algorithms use a
PCP resolution of 3 bins per semitone, as it is usual in key
detection algorithms [9], [15]. This allowed us to insert
a post-processing stage that shifts the averaged PCP ±33
cents, depending on the position of the maximum peak in
the vector.

Various tuning-frequency estimation methods have
been proposed, mostly based on statistics (cfr. [4]). Our
approach is a simplification of that described in [9]. The

3 After informal testing, we chose the following settings: mix-down to
mono; sampling rate: 44,100 Hz.; window size: 4,096 hanning; hop size:
4,096; frequency range: 25-3,500 Hz.; PCP size: 36 bins; weighting size:
1 semitone; similarity: cosine distance.

MIREX05

FHJ2 FHJ3 BD1 CN1

correct .6342 .6070 .7260 .8267
fifth .1829 .2404 .1406 .0599
relative .1102 .0367 .0583 .0272
parallel .0128 .0543 .0160 .0176
other .0599 .0615 .0591 .0687

weighted .7613 .7491 .8170 .8683

Table 1. Results on the MIREX05 Dataset.

GiantSteps

FHJ2 FHJ3 BD1 CN1

correct .3411 .6209 .5530 .3974
fifth .0712 .0613 .0662 .0480
relative .1689 .0662 .0977 .1325
parallel .0960 .0563 .0381 .0430
other .3228 .1954 .2450 .3791

weighted .4465 .6826 .6230 .4697

Table 2. Results on the GiantSteps Dataset.

algorithm finds the maximum value in the averaged chro-
magram and shifts the spectrum ±1 bin, depending on this
unique position. This shift is done only once per track,
after all the PCP’s are averaged together.

3. RESULTS

Tables 1 and 2 show the results from the MIREX 2016
competition in the Audio Key Detection task. We can see
how in the typical MIREX dataset for this task, consisting
of euroclassical music incipits, our two algorithms perform
notably below the algorithms by Bernardes and Davies
(BD1); and Cannam and Noland (CN1). This was expected
for FHJ3, an algorithm intended to detect keys in elec-
tronic dance music tracks. However, we see that Essen-
tia’s baseline algorithm with Temperley’s profiles (FJH2)
also scores below BD1 and CN1.

We observe, on the other hand, that the performance
of all algorithms except for FJH3 drops dramatically in the
Giantsteps dataset, a collection of 604 two-minute excerpts
of EDM tracks [11]. This raises questions about the us-
ability of key detection algorithms in style-agnostic appli-
cations, as well as to the validity of the evaluation dataset
used so far in the MIREX evaluation context. More specif-
ically, we see that:

• The highest number of errors of FJH3 in the
MIREX05 dataset are fifth errors (24%). This could
be explained as a clear divergence in the tonal lan-
guage of euroclassical practice in comparison to
popular music styles. 4

4 In particular, we attribute it to the fact that V-I relationship so com-
mon to euroclassical music theory is somehow perceived as a I-IV rela-
tionship in pop-rock music (and extending into EDM), what would lead



• Despite being the lowest scoring algorithm in the
MIREX05 dataset, FJH3 presents the smallest vari-
ance between the two datasets used for evaluation.

• In any case, the general results suggest that key de-
tection algorithms should be evaluated according to
the purpose they were designed for, and if not, at
least evaluate them on different styles. In this regard,
it would probably be informative to run the same al-
gorithms on other available datasets containing dif-
ferent tonal languages (e.g. the beatles dataset).

• In this sense, the limitation of analysis to incipits of
musical works based on the assumption of modula-
tion is something that should not apply (at least sys-
tematically) to all repertoires.

• Results also confirm the intuition that different
strategies should be applied to different musical
styles, that tonality is a dynamic notion that evolves
over history, and that even musical practices that are
normally regarded as poorly interesting from a tonal
viewpoint (such as EDM), pose research challenges
both to Music Information Retrieval and Music The-
ory fields.

• Last, despite we still lack datasets with extended
modal details, broadening the classification to other
widespread modes would correspond better with the
multiplicity of tonal practices, that in turn might be
distinctive of different styles. 5
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