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ABSTRACT

In this submission we present a method for automatically
estimating the key of a musical piece in a digital audio for-
mat. The proposed method relies on a perceptually mo-
tivated Tonal Interval Space, which represents multi-level
tonal pitch as 12-dimensional Tonal Interval Vectors. We
estimate the key of a musical piece by comparing the de-
gree to which beat-synchronous Tonal Interval Vectors av-
eraged across a musical piece correlate to Temperley’s [9]
24 major and minor key profiles.

1. INTRODUCTION

Our key-finding method is an extended version of a previ-
ously reported algorithm in [1]. It is based on the Tonal In-
terval Space [2], an extended type of pitch space in which
music theory principles and human perception of pitches,
chords and keys–represented in the space by Tonal Interval
Vectors (TIVs)–are expressed as distances.

Based on the assumption that a key-defining element is
the use of its diatonic pitch set, two main attributes of the
Tonal Interval Space promote the estimation of a musical
key: i) the set of diatonic pitch classes in a given key oc-
cupies a compact neighborhood around its key, and ii) the
24 major and minor keys are sparsely represented in the
space. Furthermore, the spatial proximity of each key to
its dominant, subdominant, and relative keys in the Tonal
Interval Space corresponds to our expectation of the prox-
imity between the 24 major and minor keys, thus favoring
‘close’ estimates whenever the algorithm fails to predict
the correct key.

To estimate the key of a musical piece in the Tonal In-
terval Space we compare the degree to which an averaged
vector resulting from beat-synchronous Tonal Interval Vec-
tors across a musical piece correlate to a collection of 24
TIVs derived from the major and minor chroma key pro-
files proposed by Temperley’s [9], hereafter refer to as key
TIVs. The novelty of our current method in relation to the
one reported in [1] is the introduction of a frame selec-
tion and spatial adjustment strategies after the calculation
of beat-synchronous TIVs based on their energy and level
of consonance. This processing stage aims at discarding
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Figure 1. Architecture of the key-finding method.

beats with silent or noise floor content and pulling beat-
synchronous TIVs towards the center of the space to re-
inforce and balance the estimation of key modes, as their
key-defining diatonic pitch set encompass different levels
of consonance. The overall architecture of our key-finding
method is shown in Fig. 1.

The remainder of this paper is organized as follows.
Section 2 details the Tonal Interval Space and the gener-
ation of Tonal Interval Vectors (TIV) from audio. Section
3 details the core algorithms of our key-finding method,
including a processing frame selection and spatial adjust-
ment.

2. TONAL PITCH REPRESENTATIONS IN THE
TONAL INTERVAL SPACE

To represent the most salient tonal pitch levels in the Tonal
Interval Space [2] from an audio signal, we first aggregate
the energy of each pitch class in a 12-dimensional chroma
vector, c(n), and compute a 12-dimensional Tonal Interval
Vector, T (k) as its L1 normalized Discrete Fourier Trans-
form (DFT), such that:



T (k) = w(k)

N−1∑
n=0

c̄(n)e
−j2πkn

N , k ∈ Z

with c̄(n) =
c̄(n)∑N−1

n=0 c(n)

(1)

where N = 12 is the dimension of the chroma vector
andw(k) = {2, 11, 17, 16, 19, 7} are weights derived from
empirical consonance ratings of dyads used to adjust the
contribution of each dimension k of the space. We set k to
1 ≤ k ≤ 6 for T (k), since the remaining coefficients are
symmetric. T (k) uses c̄(n) which is c(n) normalized by
the DC component T (0) =

∑N−1
n=0 c(n) to allow the rep-

resentation and comparison of different hierarchical levels
of tonal pitch [2].

2.1 Audio Beat-Synchronous Tonal Interval Vectors

We adopt the beat as the temporal resolution for represent-
ing the harmonic content in the Tonal Interval Space for
the task of estimating the key from an input audio signal.

To compute beat-synchronous TIVs, Tb(k), we first ex-
tract chroma representations on a regular and short-time
interval basis and then calculate the median value per
chroma bin for all frames within each beat to generate
beat-synchronous chroma vectors. Then, we apply Eq. 1
to compute beat-synchronous TIVs.

To compute short-time interval basis chroma vectors
we use the NNLS chroma [8] plugin within Sonic Anno-
tator [3] with default parameters. The NNLS algorithm
performs an approximate note transcription, and typically
provides a sparse representation of the input signal in the
chroma domain, closely matching a symbolic input rep-
resentation. To compute beat locations we use the QM-
VAMP bar and beat tracking plugin [5] within Sonic An-
notator [3].

2.2 Measuring Consonance

We explicitly designed the Tonal Interval Space as a dis-
torted DFT space where each component (or interpreted
musical interval) is weighted according empirical ratings
of dyads consonance, w(k), as a strategy for expanding
the pitch based representation of the Tonnetz with metrics
of tonal pitch consonance.

Beat-synchronous TIVs including single notes (at the
edge of the space and furthest from the center) are consid-
ered the most consonant in the Tonal Interval Space. Beat-
synchronous TIVs of chroma vectors, c(n), whose 12 pitch
classes have the same energy (in the center of space) are
considered the most dissonant. Within this range, the nor-
malized level of consonance, Cb, of any beat-synchronous
TIV can be measured as the norm of Tb(k) such that:

Cb =
1

β
‖ T (k) ‖= 1

β

√
T (k) · T (k) =

1

β

√√√√ M∑
k=1

|T (k)|2

(2)
where β = 32.8633 is a scaling factor used to normalize
the results to unity and equals to to the level of consonance

Pitch class Major Minor
0 .748 .712
1 .060 0.84
2 .488 .474
3 .082 .618
4 .670 .049
5 .460 .460
6 .096 .105
7 .715 .747
8 .104 .404
9 .366 .067

10 .057 .133
11 .400 .330

Table 1. Temperley’s [9] chroma vector profiles for the
major and minor key modes.

of a single pitch class (e.g. for the pitch class C, whose
c(n) = {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}).

2.3 Key TIV profiles

In [1], we compared four sets of TIVs as key-defining pro-
files for the task of estimating the key from both symbolic
music representations and musical audio in the Tonal Inter-
val Space. These sets of key TIVs derive from the follow-
ing chroma vector key profiles: i) binary activation of the
diatonic pitch set of each key; ii) Krumhansl and Kessler
(K-K) [7] profiles derived from the ‘probe tone’ method;
iii) Temperley’s [9] adjustments to the K-K profiles using
music theory principles; and iv) Chew’s [4] chord-based
profiles used in her Center of Effect Generator algorithm.

We tested the efficacy of these four set of key TIVs
in our key-finding method, and concluded that Temper-
ley’s [9] profiles (shown in Table 1) provide the best re-
sults for the following three musical datasets: Bach’s 24
fugue subjects from Book I of the Well Tempered Clavier,
the Kostka-Payne dataset [9], and a large collection of pop
and rock Beatles songs assembled by Harte [6].

Table 1 shows the Temperley’s C major and C minor
(chroma) key profiles, p, from which we compute the key
TIVs, T p

temp(k), using Equation (1). The key profiles of
the remaining keys are obtained by rotating the profiles by
12 semitones. The resulting key TIVs are used to define
the location of each of the 24 major and minor keys in the
Tonal Interval Space.

3. AUDIO KEY FINDING

Based on the assumption that a key-indicating element is
the use of its diatonic pitch set, we estimate a key of a
musical passage in the Tonal Interval Space by finding the
nearest neighbor in the high dimensional Euclidean space
of a query TIV for a given piece to a database of 24 major
and minor key TIVs.

The query TIV for a given piece is an average vector of
all beat-synchronous TIVs information across each piece,
T (k). In Eq. 3 each beat-synchrounous TIV, Tb(k), is mul-



tiplied by its normalized level of consonanceCb to regulate
a spatial displacement towards the center of the space. Fur-
thermore, all vectors with a DC component T (0) < 0.1 are
considered as noise and discarded from the average com-
putation.

T (k) =
1

B

B∑
b=1

Tb(k) · Cb, if T (0) > 0.1 (3)

whereB are the total number of averaged beat-synchronous
TIVs whose DC component, T (0), is above 0.1.

To rank the collection of 24 major and minor keys, the
system computes the Euclidean distance between the aver-
aged TIV, T (k), and all key TIVs. The best key estimate,
M is the one which minimizes:

M = argminp

√√√√ 6∑
k=1

(
∣∣∣T (k)− T p

temp(k)
∣∣∣) (4)

The system outputs the key estimate by a number rang-
ing between 0-11 for major keys and 12-23 for minor keys,
which we convert to a text format reporting the tonic and
mode of the key.
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