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ABSTRACT 

This extended abstract details our submission to the Music 
Information Retrieval Evaluation eXchange (MIREX) 2011 
for the audio training\test task. First of all, we extract a 
fixed-length feature vector (composed of some timbral as 
well as modulation spectrum features) from each training 
clip. Then, by representing a fixed-length feature vector 
(extracted from a test clip) as a linear combination of all 
training feature vectors, we classify this test clip as a class 
with the minimal re-construction residual. This is so-called 
a sparse representation based classifier (SRC). 

1. INTRODUCTION 

In recent years, modulation spectral analysis [1] and sparse 
representation [2] have been attracted much attention in the 
field of music information retrieval. In our system, modula-
tion spectral features such as octave-based modulation 
spectral contrast (OMSC) [3], modulation spectral flatness 
measure (MSFM) [3], and modulation spectral crest meas-
ure (MSCM) [3] are extracted from each long segment 
(also named texture window). In addition, short-time tim-
bral features such as Mel-scale frequency cepstral coeffi-
cient (MFCC), octave-based spectral contrast (OSC), spec-
tral flatness/crest measure, spectral centroid, spectral rolloff, 
spectral flux, spectral skewness, and spectral kurtosis are 
extracted from each short segment (also named analysis 
window). Then, we compute the mean and standard devia-
tion along each feature dimension (see Section 2 for more 
details) to obtain a fixed-length feature vector for each clip. 
In the classification stage, we use sparse representation 
based classifier (SRC) [4]. Details related to SRC can be 
found in Section 3. It should be noted that our submission 
is similar to our previous work [5], except that we do not 
utilize a random measurement matrix (e.g. a Gaussian ran-
dom matrix) to reduce the dimensionality of feature vectors. 

2. FEATURE EXTRACTION 

In our system, we extract short-time timbral features from 
“analysis window”, and modulation spectrum features 
from “texture window”. Here the length of analysis win-

dow and texture window were set to 93 ms and 10 seconds 
and 50% overlap was used for feature extraction. However, 
since the length of song clips in MIREX genre classifica-
tion task is 30 seconds, we divide each clip into three 10-
second segments (without overlapping). 

The following describe the extracted timbral features 
from analysis windows of a segment (the number in each 
parenthesis is the dimensionality of extracted features).  

Mel-scale Frequency Cepstral Coefficients (MFCCs) 
(13): represents the spectral characteristics based on Mel-
frequency scaling.  

Octave-based Spectral Contrast (OSC) (16): considers 
the spectral peak and valley in each sub-band independ-
ently, where the former corresponds to harmonic compo-
nents and the latter corresponds to non-harmonic compo-
nents or noise in music signals. We extracted spectral 
peaks and the difference between spectral peak and valley 
(this difference also named spectral contrast, reflecting the 
spectral contrast distribution) from eight sub-bands [5]. 

Spectral Flatness/Crest Measure (16): measures of the 
noisiness (flat, decorrelation) sinusoidality of a spectrum, 
where the former is computed by the ratio of the geometric 
mean to the arithmetic mean of the energy spectrum value 
in each sub-band, and the latter is computed by the ratio of 
the maximum value within each sub-band to the arithmetic 
mean of the energy spectrum value [6]. Totally eight sub-
bands as set in extracting OSC features were used here.  

Spectral Centroid (1): the centroid of amplitude spectrum. 

Spectral Rolloff (1): the frequency bin below which 85% 
of the spectral distribution is concentrated.  

Spectral Flux (1): the squared difference of successive 
amplitude spectrum.  

Spectral Skewness (1): a measure (the 3rd order moment) 
of the symmetry of the spectral distribution. 

Spectral Kurtosis (1): a measure (the 4th order moment) 
of the flatness of the spectral distribution. 



To summarize the feature vectors extracted from each 
segment, the mean and standard deviation along each fea-
ture dimension are computed, resulting in a 100-
dimensional feature vector for each segment.  
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However, since the identity of a test sample is initially 
unknown, we can develop a global dictionary matrix A  for 
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The following describe modulation spectral features 
extracted from texture window of a segment (the number in 
each parenthesis denotes the dimensionality of extracted 
features).  

Octave-based Modulation Spectral Contrast (OMSC) 
(16x12): this feature is extracted using long-term modula-
tion spectral analysis [7], resulting in a two-dimensional 
joint acoustic frequency and modulation frequency. Here 
we computed modulation spectral peak and modulation 
spectral contrast in six sub-bands to obtain a matrix of size 
16-by-12.  
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where  is a co-

efficient vector whose entries are zero except those associ-
ated with the i-th genre. Note that only those entries corre-
sponding to the genre of  are non-zero. Thus if we can 

solve the equation (2), then we can find the genre of  
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[8] has shown that the 
sparsity of x  enables us to solve the equation (2) using the 
l1-norm minimization: 

To capture the frequency variable (acoustic fre-
quency), we computed mean and standard deviation for 
each row of this matrix. On the other hand, in order to cap-
ture time-varying information through temporal modula-
tion (modulation frequency), we computed mean and stan-
dard deviation for each column of this matrix. After these 
two operations, we obtain an 88-dimensional (24+64) fea-
ture vector for each segment.  
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Once 1x̂  has been estimated, the genre of  can be 

simply decided by locating the non-zero entries in 

y
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However, noise and modeling limitations may lead to 1x̂  

has some small non-zero entries belonging to different gen-
res. To solve this problem, for each genre i, we define i  

as a characteristic function:  which selects the 

coefficients associated with the i-th genre. Now for each 
genre i, we can approximate 
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Modulation Spectral Flatness/Crest Measure 
(MSFM/MSCM) (8/8): these two features can be used to 
describe the time varying behavior of the subband energy. 
A detailed explanation of MSFM and MSCM can be found 
in [3].  n
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based on these approximations by assigning it to the genre 
with the minimum residual between  and  
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In summary, totally a 204-dimensional feature vector 
was extracted from each segment (100-dimensional fea-
tures from analysis windows and 104-dimensional fea-
tures from texture windows). 
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Let the dimension of extracted features be m (in our case 
m=204), and the feature vector of the j-th clip (or segment) 

in the i-th genre as  Then given sufficient train-

ing samples of the i-th genre, 

 any new sample  

(i.e., the extracted feature vector of a test clip) from the 
same genre will approximately lie on a linear subspace 
spanned by the i-th genre’s training samples: 
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It should be noted that since we extracted three segments 
from a song clip, the final genre of a song clip is deter-
mined by a major vote of the classified genres of these 
three segments.  

4. EVALUATION 

In this extended abstract, a widely used dataset, GTZAN 
[9], (consisting of ten genres and 100 30-second song clips 
per genre) is chosen for the evaluation. However, since this 
dataset is not artist-filtered, a ten-fold cross-validation, 
which was used in most of existing approaches to evaluate 
their performance (see Table 1), is not a fair strategy to 
compare the performance with different approaches. Spe-
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cifically, according to our experience, the performance (e.g., 
the averaged accuracy of ten-fold classification results) will 
be better about 5-10% if a “lucky” cross-validation split of 
this dataset is given. Therefore, we used leave-one-out 
cross-validation here in order to provide a fair baseline for 
researchers who want to evaluate their performance on this 
dataset in the future. 

Reference Cross-Validation Accuracy 

Tzanetakis and Cook [9] Ten-fold (randomly 
repeated ten times) 

61.0% 

Panagakis et al. [10] Ten-fold  78.2% 

T. Li et al. [11] Ten-fold 78.5% 

Li and Ogihara [12] Ten-fold 78.5% 

Panagakis et al. [13] Ten-fold 84.3% 

MIREX 2011 Submission Leave-one-out 86.1% 

Lee et al. [1] Ten-fold (randomly 
repeated ten times) 

90.7% 

Panagakis and Kotropoulos [2] Ten-fold 93.7% 

Y.-F. Huang and Y.-S. Li [14] Ten-fold 97.2% 

Table 1. Comparison of classification approaches evaluated 
on the GTZAN dataset. 
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